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Abstract—Recent advances in neuroscience and humanoid
robotics have allowed initial demonstrations of brain-computer
interfaces (BCIs) for controlling humanoid robots. However,
previous BCIs have relied on higher-level control based on fixed
pre-wired behaviors. On the other hand, low-level control can
be tedious, imposing a high cognitive load on the BCI user.
To address these problems, we previously proposed an adaptive
hierarchical approach to brain-computer interfacing: users teach
the BCI system new skills on-the-fly; these skills can later be
invoked directly as high-level commands, relieving the user of
tedious control. In this paper, we explore the application of
hierarchical BCIs to the task of controlling a PR2 humanoid
robot and teaching it new skills. We further explore the use of
explicitly-defined sequences of commands as a way for the user
to define a more complex task involving multiple state spaces.
We report results from three subjects who used a hierarchical
electroencephalogram (EEG)-based BCI to successfully train and
control the PR2 humanoid robot in a simulated household task
maneuvering the robot’s arm to pour milk over a bowl of cereal.
We present the first demonstration of training a hierarchical BCI
for a non-navigational task. This is also the first demonstration
of using one to train a more complex task involving multiple
state spaces.

I. INTRODUCTION

Using humanoid robots to perform remote tasks with human
supervision has been a subject of considerable interest in the
robotics community [1], [2], [3], [4]. Humanoid robots are
often considered proxies or assistants to humans, performing
tasks in both real-world environments designed for humans
and in environments considered too dangerous for humans [1],
[2]. Additionally, humanoid robots have also been proposed as
a telecommunications medium [4].

One interesting approach to controlling a humanoid robot
is direct brain-based control using a brain-computer interface
(BCI) [5], [6], [7]. To achieve such control, one must confront
the high degrees-of-freedom inherent in humanoid robots.
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This problem is common to other, more standard ways of
controlling a humanoid, such as using a joystick, speech
recognition, and visual feedback systems [8], [9], [10]. This
problem is made worse when we couple a humanoid with
BCIs, which tend to have low throughput. Low throughput
implies the BCI system contrains the number and resolution
of commands the user can discriminate between in any given
period of time.

Besides low throughput, there are problems inherent in
using BCIs as robotic controllers. Non-invasive BCIs, e.g.,
those based on EEG signals recorded from the scalp, suffer
from low signal-to-noise ratio, which limits the bandwidth of
control. Invasive BCIs that tap directly into neurons in the
brain allow fine-grained control, but such an approach can
leave users exhausted since control is typically exerted on a
moment-by-moment basis [11].

To overcome these problems, we previously proposed an
adaptive hierarchical BCI (HBCI) architecture which allows
the user to teach the system new and useful tasks on an
ongoing basis [12]. First, the user demonstrates a higher-level
skill to the robot using only lower-level commands (e.g. turn
left). Later, the user executes the high-level command (e.g., the
command “go to point A on the map”), which is then carried
out semi-autonomously by the robot. Such higher-level control
frees the the user from having to engage in tedious moment-
by-moment control once a command has been learned.

These previous HBCIs applied only to navigational tasks,
limiting their domain of use. In this paper, we investigate
whether an HBCI can be used in a close-range space, such as
the space of all points where a humanoid robot manipulator
can reach. We demonstrate the learning of arm trajectories
using the HBCI. We give the user the ability to train the
robot to maneuver its grippers in a close-quarters environment.
Second, we propose a simple sequence memorization scheme
where a user is able to define a new higher-level skill by
concatenating several mid-level skills and lower-level motor
primitives such as opening/closing and rotating the gripper.
The user can subsequently use this sequence command to solve
the more complex task. Since sequencing in this case involves
individual commands at any level of the control hierarchy, it
is not tied to any particular robot state space, allowing for the

199

2011 11th IEEE-RAS International Conference on Humanoid Robots 
Bled, Slovenia, October 26-28, 2011

978-1-61284-868-6/11/$26.00 ©2011 IEEE



Fig. 1. Experimental set-up. A. The user selects from a menu shown on a monitor by focusing on one of five LED lights while visual feedback from the
PR2 robot’s head camera is provided on the main portion of the screen. B. Semi-humanoid PR2 robot in remote location. The robot was used in this paper
for performing in-range manipulation tasks while remaining in a fixed position.

training of more interesting tasks.
While we only allowed the user to sequence lower- and mid-

level skills for the sake of this demonstration, the technique
given here could easily scale to arbitrary levels of hierarchy.
A sequence could hold commands from any level of the com-
mand hierarchy, opening the door to sequences of sequences
representing whole lists of tasks. For instance, in this case we
demonstrate the pouring of milk over cereal, but the system
could just as easily extend to making breakfast, which is a
whole series of complex tasks.

We report results from three subjects who used a hier-
archical EEG-based BCI to successfully train and control a
PR2 humanoid robot. The task involved teaching the PR2 to
perform actions that simulate pouring milk over a bowl of
cereal. Our results suggest that HBCIs could offer an efficient
and adaptive approach to using brain signals to teach and
control humanoid robots the solutions to complex tasks.

II. SYSTEM ARCHITECTURE

The hierarchical architecture is a modular system with three
elements:

1) A control interface which receives noisy input from the
brain, in this case a BCI based on Steady State Visually-
Evoked Potentials (SSVEPs). The BCI operates by ex-
posing the user to oscillating visual stimuli. Electrical
activity corresponding to the frequency of this oscillation
(and its multiples) can be measured from the occiptial
lobe of the brain located at the back of the skull. The
user issues a command by choosing a stimulus (and
therefore a frequency) to pay attention to. The BCI
measures the corresponding EEG activity and attempts
to infer from it the command the user has chosen for

execution [13] (Fig. 1.A). Note, though, that other BCI
paradigms allowing discrete classification could be used
as well;

2) A hierarchical and adaptive menu;
3) A humanoid robot; in this case we used the Willow

Garage PR2 semi-humanoid robot which has a head with
2 dofs and two arms with 7-8 dofs each (Fig. 1.B), but
other humanoid robots could also be used.

We included several enhancements relative to the system
proposed in [12] to scale up the interface to control a high
degrees-of-freedom semi-humanoid robot. We used ROS [14]
to handle the communication between components. We de-
scribe each component in detail below.

A. SSVEP-based BCI

LEDs were used as stimuli for generating SSVEPs (rather
than an LCD monitor as in [12]). We have found LEDs to
offer a greater degree of freedom in choice of frequencies for
SSVEP-based BCIs. We used five red LEDs in circular light
boxes. These oscillated at frequencies of 12 Hz, 15 Hz, 17
Hz, 20 Hz, and 22 Hz. The light boxes were mounted to the
screen next to their corresponding menu options as shown in
Fig. 2 and laced behind a diffusive material to enhance the
stimulus effect.

Continuous EEG signals were recorded bipolarly from gold
electrodes placed at two standard locations on the skull - Fpz
which is located on the forehead, and Oz, which is located
at the center of the back of the skull. We connect ground
at the Fpz position. The signal was notch filtered at 60Hz
and digitized at 256Hz (gUSBamp, Guger Technologies, Graz,
Austria).

We estimated the signal’s power spectrum using the Fast
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Fig. 2. SSVEP-based Control Interface. The interface is comprised of
LED stimuli and the main screen. The main screen is composed of a video
feed from the robot and current menu options. In the screenshot above, the
top menu options are being displayed.
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Fig. 3. Overview of control flow in the hierarchical menu system.

Fourier Transform (FFT), which was used to classify the
user’s input. The FFT was applied to 1.0s intervals of the
EEG signal every 0.5s and the power for each frequency
was then computed using squared values. The data used for
the classification was a 4s average of the power values. The
frequency with the highest average was classified as the user’s
choice for that time period and the appropriate commands were
sent to the robot and to the menu system.

Note that this hierarchical system allows for the use of many
types of BCI paradigms other than SSVEP. Any BCI allowing
discrete classification could make use of such a hierarchical
command structure. As such, the use of a hierarchical com-
mand structure is not limited to SSVEP alone.

B. Hierarchical Adaptive Menu

The hierarchical menu is the user interface to the entire
system. The menu allows the user to control the robot directly
as well as interact with the learning system to teach the
robot new skills. The menu display consists of five menu
choices around the border of the screen. The middle of the
screen displays a live video feed from a camera on the robot’s
head. When the experiment first begins, the menu presents

Fig. 4. Hierarchical BCI Architecture. The user can train arm trajec-
tories and define higher-level command sequences consisting of lower-level
primitives and learned trajectories.

5 options: Train, Train Sequence, Navigate, Playback, and
Playback Sequence (Fig. 2).

Selecting the command “Train” allows the user to teach the
system a new arm trajectory skill. This menu gives the user
the option of moving the arm forward, backwards, left, or
right, or finish training the new skill. When the user selects
“Stop”, the user is presented with a save menu which gives the
user the option of saving the skill or discarding the collected
data. To enhance the robustness of selection, we present the
user with several confirmation menus to safeguard against
misclassification. After the user presents an example trajectory
of a skill to learn, the learning system generates a policy
mapping robot states to actions based on the recorded data.

We create the policy using Gaussian Processes as in [12].
This policy interpolates for areas away from the original
training path, enabling it to be somewhat flexible with respect
to the starting position of playback. The user can then test the
learned skill using the Playback menu or use it as part of a a
higher-level command sequence.

Note that while our screen to playback sequences in this
case allows for only four choices of sequences, this is easily
scalable to more. We could allow for an arbitrary number
of menu screens, enough to hold the skills needed. Also, to
prevent the user from needing to search through a large number
of screens, the HBCI system could filter the current sequences
based on relevance to the robot’s present state (e.g. to not show
sequences involving dropping an object if the gripper currently
holds nothing and the sequence does not involve grasping).

Selecting the “Train Sequence” command gives the user the
ability to create a higher-level command sequence, which can
consist of previously trained arm trajectory commands as well
as lower-level primitives such as rotating the wrist left or right,
and opening or closing the gripper. When a user selects a skill
to add to the new command sequence, a confirmation screen is
displayed to verify the user’s intentions. Any number of skills
can be added to the sequence. Once the user selects “Exit”
and saves the new sequence, it can then be selected from the
Sequence Playback menu. When a user executes a high-level
command sequence, the list of commands that make up this
sequence will execute in order, one after the other. While the
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robot executes these commands, the user has the ability to
move the head of the robot up, down, left, and right in order
to monitor the robot’s motion (see Fig. 4).

C. Robot and Robot Software

The experiments in this paper were carried out on a Willow
Garage PR2 semi-humanoid robot. We presented the user
with basic lower-level motor primitives using pre-programmed
library functions provided by ROS [14]. These include basic
object manipulation primitives such as toggling the right
gripper open or closed and rotating the right wrist link. The
library also includes head joint manipulation, allowing the
user to swivel the head-mounted camera. Finally, it includes
moving the gripper forward, backward, left, and right relative
to the torso.

The current system focuses on learning arm movements
using the position-based trajectory learning framework pro-
posed in [12]. However, this approach could be extended to
more complex learning schemes including control of multiple
joints simultaneously or separately. We intend to explore such
schemes in the near future.

Video feed from a camera on the robot’s head was continu-
ously fed to the user for visual feedback on the robot’s actions
(Fig. 2).

III. EXPERIMENTAL PROCEDURE

Three able-bodied male subjects (ages: 21, 27, 20) partic-
ipated in the study, which was approved by the University
of Washington Institutional Review Board. All subjects gave
written informed consent.

We instructed the subjects to teach the humanoid a com-
mand sequence representing a milk-pouring task. The ex-
periment assumes that an open container containing milk
(represented by a lego block as shown in Fig. 1.B) is in the
robot’s right gripper. The user must maneuver the container
over a receiving receptacle on the other side of the table and
rotate the wrist to pour the milk. To make the task more
challenging, we placed an obstacle (represented by the blue
block) between the right gripper’s starting position and the
goal position (see Fig. 1).

Over the course of a single session, the subject was in-
structed to

1) Train an arm trajectory which avoids the obstacle and
arrives at the goal position;

2) Create a command sequence representing the entire
complex skill;

3) Play back the learned sequence from three different
starting positions.

To demonstrate the robustness of the position-based method
for learning arm trajectories, we reset the robot three times and
instructed the user to execute the learned skill. With each reset,
the robot’s starting state was set to a different initial position.
The initial positions were approximately the same for each
user. To measure success, we observed whether the gripper
ended over the bowl of cereal given the starting position.

Fig. 5. Subject Arm Trajectories Red indicates an original training
trajectory. Blue indicates trajectories that result from executing the learned
policy. Circles indicate starting states. Squares indicate successful ending
states. Triangles indicate unsuccessful ending states. Black X indicates starting
state for original training.

IV. RESULTS

All subjects were able to use the HBCI to teach the
robot an arm trajectory and subsequently define a higher-
level command sequence. In all cases the command sequence
enabled the user to perform the more complex task with a
minimal number of commands. We compared this directly to
the number of commands used in defining the sequence in the
first place, since this is equivalent to the number of commands
necessary to complete the task using a combination of lower-
and mid-level skills. In all cases the use of the sequence skill
drastically reduced the number of commands necessary to
accomplish the task (Fig. 6.)

We measured the number of commands made by the user
for each phase of the experiment. The number of commands
made by the user has a direct relationship to the cognitive load
encountered.

The arm trajectory plots, shown in Fig. 5, provide several
interesting insights. First, for all users, the trained sequence
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TABLE I
SUMMARY OF SEQUENCE EXECUTION PERFORMANCE

Starting state Subject 1 Subject 2 Subject 3
1 X X X

2 X X X

3 – X X

X indicates goal state reached, – indicates goal state not reached.
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Fig. 6. User Command Counts vs. Task *This category is equivalent to
the number of commands used to define the sequence skill.

was successfully executed regardless of starting state, with one
exception. The learned policy for arm trajectories thus appears
to be reasonably robust with respect to starting state.

Second, the robustness of any given arm trajectory skill
appears to be a function of the amount of noise inherent in a
user’s original training data. For example, Subject 1 had trou-
ble in some cases differentiating between moving the arm left
versus moving it right. This directly contributed to the robot’s
inability to complete the assigned task when beginning in the
lower starting state since it affected the shape of the learned
policy in that area. Subject 2 had noisy training data near the
end of the trajectory, which resulted in the robot over-shooting
the target location but the learned policy was robust enough to
allow the robot to autonomously accomplish the assigned task
(in one case the target was slightly overshot). This suggests
that the position-based trajectory learning method smoothes
out some of the noise in the users’ original training data.
Subject 3 had near perfect control of the robot and the played-
back paths of this subject’s arm trajectory were the smoothest.
These results imply that some inefficiencies in a user’s original
training example may be automatically removed through the
trajectory learning method.

Fig. 6 show the results of monitoring user commands in the
BCI system. Training a sequence allows the user to define the
skill once but then execute it as many times as desired. First, as
expected, relative to executing or training a sequence, selecting
a learned command sequence requires a minimal amount of
cognitive effort (2 commands in the hierarchical menu system).
In comparison, when the users specified the task by selecting
the arm trajectory and wrist rotation primitives individually,
they used approximately 20 commands. This reduction implies
a considerable savings in the number of commands necessary
to accomplish a task. This directly improves the throughput of
the BCI and lowers the demand on the user.

V. SUMMARY AND CONCLUSION

BCIs have only recently been suggested as control methods
for humanoid robots. We have proposed hierarchical BCIs as
a new approach to controlling humanoid robots that combines
the flexibility of low-level control with the lower cognitive
load of high-level control. Such an approach allows humanoid
control to be tailored to the needs and the enivironment of the
user on an as-needed basis.

Our results from three subjects provide a proof-of-concept
demonstration that:

1) Hierarchical BCIs can be used to teach a humanoid robot
new skills at multiple hierarchical levels;

2) Adding an additional level to the command hierarchy
can result in a significant reduction in cognitive load;

3) Sequencing over both primitive motor commands (low-
level control) and learned high-level skills can allow a
user to solve complex tasks directly using brain signals.

Our ongoing efforts are focused on:

1) Extending the BCI architecture to allow learning over
multiple state spaces, for instance, learning both navi-
gational commands as well as arm/hand movements;

2) Incorporating pre-programmed robotic skills such as
auto-grasping or auto-navigation to further reduce user
training time and allow the user to focus on learning
higher-level command sequences;

3) Utilizing more sophisticated machine learning and prob-
abilistic reasoning algorithms to handle the uncertainty
and noise inherent in brain-based robotic control;

4) Augmenting brain signals with other signals such as
eye movement, voice, and muscle-based commands to
explore the full-range of human biological control of
humanoid robots.
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