
Automatic Extraction of Command Hierarchies for Adaptive
Brain-Robot Interfacing

Matthew Bryan∗,‡, Griffin Nicoll†, Vibinash Thomas†, Mike Chung∗, Joshua R. Smith†,‡, Rajesh P. N. Rao∗,‡
∗University of Washington Neural Systems Lab, Seattle, USA
†University of Washington Sensor Systems Lab, Seattle, USA

‡Member, IEEE
Email: mmattb@cs.washington.edu, vibintho@uw.edu, rgnicoll@uw.edu,

mjyc@cs.washington.edu, jrs@cs.washington.edu, rao@cs.washington.edu

Abstract— Recent advances in neuroscience and robotics have
allowed initial demonstrations of brain-computer interfaces
(BCIs) for controlling wheeled and humanoid robots. However,
further advances have proved challenging due to the low
throughput of the interfaces and the high degrees-of-freedom
(DOF) of the robots. In this paper, we build on our previous
work on Hierarchical BCIs (HBCIs) which seek to mitigate
this problem. We extend HBCIs to allow training of arbitrarily
complex tasks, with training no longer restricted to a particular
robot state space (such as Cartesian space for a navigation task).
We present two algorithms for learning command hierarchies
by automatically extracting patterns from a user’s command
history. The first algorithm builds an arbitrary-level hierar-
chical structure (a “control grammar”) whose elements can
represent skills, whole tasks, collections of tasks, etc. The user
“executes” single symbols from this grammar, which produce
sequences of lower-level commands. The second algorithm,
which is probabilistic, also learns sequences which can be
executed as high-level commands, but does not build an explicit
hierarchical structure. Both algorithms provide a de facto
form of dictionary compression, which enhances the effective
throughput of the BCI. We present results from two human
subjects who successfully used the hierarchical BCI to control
a simulated PR2 robot using brain signals recorded non-
invasively through electroencephalography (EEG).

I. INTRODUCTION

Using humanoid robots to perform remote tasks with
human supervision has been a subject of considerable interest
in the robotics community[1], [2], [3]. Humanoid robots are
often considered proxies or assistants to humans, performing
tasks in both real-world environments designed for humans
and in environments considered too dangerous for humans.

One method of controlling an assistant robot is the brain
computer interface. This method of control has particular
appeal since it could allow a severely paralyzed or “locked
in” patient to manipulate their external environment via
a robotic avatar, allowing them to gain some amount of
independence [4], [5], [6].

However, this endeavor has proven challenging due to the
low throughput of traditional non-invasive BCIs and the high
DOF of the robot. The BCI’s low signal-to-noise ratio means
that reliable information can be extracted from the brain only
over long time intervals. At the same time, the high DOF

This research was supported by ARO Award no. W911NF-11-1-0307,
NSF award no. 0930908, the Office of Naval Research (ONR), and a Mary
Gates Research Scholarship awarded to MB.

of the robot means a large amount of information needs
to be extracted over short intervals of time. We therefore
propose that a BCI/robot system should provide a high-level
interface which summarizes the information necessary for
full control of the robot (e.g. presenting an interface for a
grasping routine where the BCI user only selects an object
to be grasped). At the same time, it must also balance this
high-level summary with the flexibility to achieve the tasks
desired by the BCI user [7].

Previous BCIs for robot control have relied on a static set
of pre-programmed behaviors. This allows the user to have
some basic control over the robot, but such an approach is
inherently inflexible. An alternate approach is to control the
robot using low-level moment-by-moment commands but the
low throughput of the interface means accomplishing even
basic tasks is tedious and time consuming. The cognitive
load imposed by this tedium makes such BCI/robot systems
impractical for real-world use in accomplishing complex
tasks.

We previously proposed hierarchical BCIs (HBCIs) [8],
[9], [10] which address this problem by allowing the user
to teach the robot new skills using individual, relatively
low-level commands. Since we allow the user to execute
these low-level commands, the system can provide enough
flexibility for the user to perform her/his desired tasks. At the
same time, a newly-taught skill can later be executed with
a single command, effectively increasing the throughput of
the interface and relieving the user of some amount of lower-
level control.

This previous work on HBCIs did not allow arbitrary-
levelled skill hierarchies. In [8], [9], and [10] we explored
the benefits of a two-level hierarchy: low-level navigational
commands and trained high-level trajectory commands. In
[11] we trained gripper trajectories and allowed the user to
add a third level to this hierarchy by explicitly specifying
a sequence of commands that represent a larger task. With
restrictions on the height of the command hierarchy the user
was able to specify individual skills but not larger, more
complex tasks or sets of tasks. Also, these previous systems
restricted learning to particular state spaces and thus did not
allow for training of more general tasks. As a result, the
throughput gains were limited.

In this paper, we compare two algorithms which automat-

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 3691

ically learn command hierarchies from the user’s command
history: recurring patterns are recognized and made available
as new high-level abstract commands. This approach pro-
vides a method for training new robot skills without tying
a learning algorithm to a specific state space, thus allowing
the user to specify skills involving any number of spaces.
Moreover, the fact that learning is based on recurring patterns
means that the noise in low-level control is likely to be
ignored.

The first algorithm extracts an arbitrary-levelled hierarchi-
cal skill structure, which we call a “control grammar.” This
structure contains both lower-level commands and higher-
level commands such as whole skills, tasks, sets of tasks,
etc. It is extracted from the user’s command history using the
Sequitur (Nevill-Manning) algorithm. This algorithm infers
a context-free grammar from a sequence of discrete symbols
[12]. The symbols in this grammar ultimately produce a
set of lower-level commands. Non-terminal symbols in this
case represent commonly occurring patterns of terminal
symbols or other non-terminal symbols. These non-terminal
symbols represent higher-level skills such as a whole task.
By identifying recurring sequences of commands/symbols,
we take advantage of patterns in the user’s command history.

For illustration, suppose the HBCI ob-
served the user’s command history to be
“a,1,b,c,a,2,b,c,b,3,a,c,b,4,a,c,a,2,b,c,b,3,a,c” where each
given letter is an arbitrary lower-level command (this is
adapted from one of our subject’s results). Sequitur in this
case would return the following output:

• S0: a,1,S1,S2,b,4,S3,S2
• S1: b,c
• S2: a,2,S1,b,3,S3
• S3: a,c

In this case, all S# symbols are non-terminal symbols -
sequences of other symbols. We present the non-terminal
symbols in this vocabulary, which represent higher-level
commands, to the user for execution, with some exceptions
(see System Architecture). If the user were to “execute” S2,
this symbol would be parsed into lower-level commands and
the robot would receive the command string “a,2,b,c,b,3,a,c.”

The second algorithm extracts maximum-length sequences
which appear multiple times. It begins with all observed
sequences and recursively grows the sequences longer if,
given the observed data and the sequence built thus far, the
next symbol to appear can be inferred with relatively high
probability. Once this process is complete, the remaining
sequences are eliminated using a set of filters (see Sys-
tem Architecture). Unlike Algorithm 1, Algorithm 2 does
not build sequences into an explicit hierarchy. However, it
imposes no restriction on whether sequences can overlap in
any way. This means Algorithm 2 can represent sub-tasks,
tasks, etc., just as Algorithm 1, but will not organize them in
the same way. Using the same example as with Algorithm
1, Algorithm 2 would return only one result after filtering,
roughly equivalent to S2 above: “c,a,2,b,c,b,3,a,c.”

As with our previous HBCI proposals, the use of these
algorithms increases the effective throughput of the HBCI.

Sheet1

Page 1

User

BCI

GUI

Skill
Manager,
Sequence
Extractor

Robot

Brain signal

Available Skills

Robot State

Lower-level
Commands

Robot

Commands

Robot S
tate,

Ava
ila

ble S
kil

ls

Fig. 1. Overview of system architecture

Other forms of communication use similar methods to in-
crease effective throughput (e.g., compression in modern
networks). Compression increases effective throughput by
encoding messages into forms that occupy a smaller data
space; these encoded messages are transmitted through the
communications medium and can be decoded by the receiver
into a form which is the same or similar to the original, larger
message. As a result, the effective throughput of the commu-
nications device is increased. Similarly, the HBCI encodes
whole sequences of commands into single commands which
can be decoded and sent to the robot for execution, increasing
the effective throughput of the system.

Our command sequence extraction algorithms share sim-
ilarities with auto-completion algorithms used in text inter-
faces such as search engines and “texting” apps for mobile
platforms (e.g. [13], [14], [15]). These auto-completion al-
gorithms observe partially entered data and attempt to match
them to patterns observed in an existing corpus such as
a dictionary or a set of usage data. Once such matches
have been made, they are suggested to the user as a way
of automatically completing the data entry task. This raises
the effective throughput of the text interface by reducing the
number of keystrokes necessary. Likewise, our HBCI design
tracks user data and makes observed patterns available as
single commands, allowing the user to abbreviate their input.

The framework we propose can be applied to any com-
plex robotic task where there are repeated (and possibly
nested) sub-tasks which can occur in different orders. For the
purposes of illustration, we use a simple task that involves
mixing a set of ingredients to obtain a final product (e.g.,
a drink). We give the user recipes for making drinks and
the user must use a simulated PR2 robot to make them.
Low-level commands include turning the robot, grasping an
ingredient, and pouring it into a mixture. Since recipes will
share ingredients, patterns can be expected to emerge as
soon as multiple recipes have been mixed. From that point
forward, the user will be able to complete the task again
using fewer commands. This process repeats four times.
We show that as more data is collected (the size of the
command history increases), the corresponding increase in
recognized patterns (sequences) leads to a drastic increase
in the effective throughput of the HBCI.

II. SYSTEM ARCHITECTURE

As in our previous work, this HBCI’s architecture consists
of three modular elements:

3692

Turn Robot
or Pour &

Drop
Ingredient

Confirm

Grasp
Object

Execute
High-
Level
Skill

Wait to
Finish

Execute
High-
Level
Skill

Sufficient
screens to
show all

sequences

Execution
Completes

'Yes'

Make
selection/
'No' to
return

'Next'

Start

Fig. 2. Overview of menu system flow. Each node represents a screen
presented to the user. Black triangle indicates starting screen.

1) A low-throughput control interface which receives
noisy input from the brain, in this case a BCI based
on Steady State Visually-Evoked Potentials (SSVEP)
[16]. Other BCI paradigms with discrete classification
could be used as well;

2) A hierarchical and adaptive menu which displays the
robot’s current state and the list of available skills;

3) A high DOF robot.

A. SSVEP-based BCI

We use the same EEG-setup and classification process as
in [11]. Please refer to it for details.

B. Robot Simulation

We use the Gazebo robot simulator with a model of
the PR2 semi-humanoid robot. Other grasping robots could
also be used. To simplify, we use hard-coded poses to
turn the robot in place, grasp, and pour rather than using
more dynamic action mechanisms (e.g. collision avoidance).
Grasping in this case is based on assumed positions of the
ingredients. While this approach is limiting, we use it only
for simplification. The HBCI does not preclude the use of
true object detection and recognition with dynamic grasping
or other, more robust, forms of control.

C. Hierarchical Adaptive Menu

We use a menu system with five command options per
screen. The initial screen displays lower-level commands
such as turning the robot, etc. It also presents two additional
commands: one to transition to the “Grasping” screen, and
one to the “Sequences” screen (Fig. 2).

The Grasping screen allows the user to select an object
currently in view and to grasp that object. This menu labels
the graspable objects visually and allows the user to select
them by their labels. An additional command allows return
to the initial screen.

The Sequences screen displays all higher-level skills cur-
rently recorded in the Skill Manager. Sufficient screens to
display all of them can be accessed by selecting ’Next.’
The user selects a higher-level command for execution using

these screens. Upon doing so, the command is parsed into
a string of lower-level commands to be sent to the robot.
The screen displays the sequences by listing the lower-level
commands into which they will be parsed. While this may
impose some burden on the user who must read the command
list and understand it, it nevertheless appears the users in our
experiment found it easy to use for our simple test. Moreover,
more sophisticated alternatives likely exist. For instance, a
visual simulation of a sequence’s effect may allow the user
to have a better understanding of what a sequence would do.

The menu system displays the Confirmation screen after
the selection of a command for execution. The user can select
‘No,’ which will return the user to their previous position in
the menu. Selecting ‘Yes’ sends the command to the robot.
During execution, the user sees a Wait screen where they can
observe the execution of the command, but cannot make any
commands until it completes. For the sake of system safety,
one could allow for a “Cancel” command on this screen.
However, for the sake of simplicity we did not implement
that for these experiments. Once the robot completes the task,
control returns to the user.

D. Skill Management, Sequence Extraction

The Skill Manager tracks all currently known robot skills,
command history, and robot state. It also filters the results of
the command sequence extraction process. Filtering is used
here to increase the efficiency of the system.

With the first filter for the Sequitur algorithm, we exclude
symbols which appear only once in the command history,
which is always the entire command history itself (S0 in
the example above). By filtering to include only symbols
which appear multiple times, we make it more likely the
user will want to use the symbols which are displayed. This
prevents the user from having to manually filter through
many superfluous choices. Second, we exclude any symbols
which parse into fewer than three terminal symbols. Given
that the user must look through a list of available commands
to execute, and that the user must confirm each selection
they make, the presentation of symbols of length two does
not net any throughput gains to the HBCI system.

With the Max Chaining algorithm, we filter short and
infrequent sequences in the same way. Additionally, remain-
ing sequences which appear as the right-hand elements in a
longer sequence are removed (expanded below).

E. Algorithm 1: Sequitur algorithm

The Sequitur algorithm works by generating non-terminal
symbols over patterns which it observes in a sequence of
discrete terminal symbols [12]. It scans the sequence, and
as it observes patterns, it replaces them with single non-
terminal symbols. It inserts the non-terminal symbols in
a rule table. This table is similar to the dictionary in a
dictionary compression algorithm. Each non-terminal symbol
definition may contain other non-terminal symbols, thus cre-
ating a hierarchical structure. The encoded original sequence
is also added to the table as a top-level rule (labelled ’S0’

3693

above). The final structure constitutes a context-free “control
grammar.”

Using this algorithm over the user’s command history can
be likened to automatic task identification and decomposi-
tion. If a task appears multiple times in the user’s command
history, Sequitur may identify it and label it with a non-
terminal symbol. Likewise, if a sub-task appears across
multiple tasks, it may be labelled and the tasks of which
it is a part will be partly decomposed to include it. In this
sense, the use of the Sequitur algorithm allows for automatic
learning of an arbitrary-levelled control hierarchy.

F. Algorithm 2: Maximum-length chaining

This algorithm begins with all observed sequences and
sub-sequences. If a given symbol always or nearly always
follows the sequence in the observed history, it is appended
on the end, the shorter sequence is deleted, and the process
is repeated again. In this case “nearly always” is defined by
a probability threshold, which we set to 0.75. This can be
likened to our previous work in [10] where the robot would
execute a policy until it no longer had sufficient confidence
to proceed.

To illustrate, consider the input sequence “a,b,c,1,a,b,c,2.”
Max Chaining begins with all observed length-2 sequences
and determines the most likely postfix to them. For instance,
“a,b” is always followed by “c,” which is the most likely
postfix. If the most likely postfix appears with at least 0.75
probability, we discard the shorter sequence, “a,b” in this
case, and form a length-3 sequence, “a,b,c.” Next we observe
that “a,b,c” is not followed by any single postfix with proba-
bility at least 0.75, so we cannot extend it further. We move
on to “a,b,c,1” and “a,b,c,2” and attempt to extend them
further. This process continues until we consume all observed
sequences, Once this completes we have this remaining list:

• a,b,c
• b,c,2
• a,b,c,2
• 1,a,b,c,2
• c,1,a,b,c,2
• b,c,1,a,b,c,2
• a,b,c,1,a,b,c,2

Finally, we apply our filters, which eliminate all but “a,b,c,”
which becomes our only output.

Unlike Sequitur, this algorithm does not create a hier-
archical structure. However, it has no restrictions on the
sequences which it can identify, other than the filtering rules,
and it therefore could include the same list of sequences as
the Sequitur algorithm. Also, though it does not generate
a hierarchical structure, the user experiences this algorithm
in the same way as the other since in both cases the user
sees only the sequences generated and not the underlying
structure itself.

Since this algorithm incorporates some probabilistic el-
ements, it may be more robust than Sequitur with respect
to noisy control. If a given control sequence includes some
amount of noise, this algorithm will identify that the noisy
form is an approximation of another form, provided that

Fig. 3. Overview of the experimental environment

sufficient clean examples appear elsewhere in the user’s
command history.

This algorithm makes a trade-off between over-fitting to
past experience and quickly chaining whole tasks together.
By pruning extend-able sequences, Max Chaining may lose
some sub-sequences which the user could find useful in
the future. However, this is balanced by tending towards
longer sequences, which may make the algorithm tend to-
wards larger throughput gains if the user does not need the
discarded sub-sequences. For BCI-in-a-home applications, it
may make sense to compress longer sequences since the user
will most likely be following lengthy daily routines which
the system can learn quickly.

III. EXPERIMENT
A. Human Subjects

Two able-bodied male subjects (ages: 20, 27) participated
in the study, which was approved by the University of
Washington Institutional Review Board. All subjects gave
written informed consent.

We gave each subject two drink recipes, which they were
to mix using the PR2 robot simulation controlled using the
HBCI. We placed four ingredients for these recipes around
the robot in predefined locations (Fig. 3). We labelled the
ingredients ‘Blue’, ‘Green’, ‘Yellow’, and ‘Red.’ Each recipe
consisted of three ingredients. The two recipes contained at
least one different ingredient than the other.

In front of PR2 sat a table with a container in which
the recipe was to be mixed. Ingredients sat on tables to the
left and right of PR2. We programmed the PR2 to have the
following lower-level commands:

• Rotate PR2 left or right 90 degrees
• Pour the ingredient currently in the right hand and

discard the empty container
• Grasp left or right object on the table
Each subject performed two experiments: one for each

algorithm. Each experiment took place over four phases.

3694

During each phase the user was to mix both recipes once. The
order in which the recipes were mixed varied from one phase
to the next in order to induce more variation in the user’s
command history. Phase 1 was performed only once and
was shared across experiments since it did not include the
execution of any extracted sequences. It involved only lower-
level commands. We gave the user the option to perform
these phases across multiple days rather than in one sitting.

In the second phase, the user mixed the same two recipes
again, but in reverse order. This reverse order ensured that
the user had to select each recipe separately in phase three,
allowing us to demonstrate the full use of the control hierar-
chy. The HBCI carried the command history over from the
user’s previous session. The sharing of ingredients between
the two recipes made it likely that some repetition occurred
in the command history coming into phase 2. As a result,
the control grammars contained some higher-level commands
that allowed the user to make the same recipes with fewer
commands. The new commands made during this session
were appended to the end of the command history as they
were made.

In the third and fourth phases, the user once again mixed
the same two recipes in the original order. Since each recipe
appeared multiple times in the user’s total command history,
longer patterns tended to emerge in these phases, often
representing an entire recipe or both recipes. Once again,
the HBCI appended the new commands to the end of the
user’s command history.

B. Monte Carlo Simulation

We use human subject testing to demonstrate that this
HBCI improves effective throughput in a real-world situa-
tion. However, due to resource constraints human subject
testing permits only a limited number of tests. We therefore
performed more extensive testing of our HBCI framework
using a simulated user. This user simulates the general
behavior of a human user including some amount of noisy
control and occasionally using other sub-optimal sequences
of commands. We use the simulated user to repeat the
same experiments given to human users for a total of 500
iterations. We repeat this set of experiments twice - once
with noise levels equal to the average noise level of the two
human subjects, and once with noise level 2.5 time higher
than the average.

IV. RESULTS

In order to measure improvements in effective throughput,
we recorded the number of commands issued by the user
to accomplish each task rather than directly measuring the
average number of bits transmitted per second. While the
actual time to complete a task may decrease somewhat as
the HBCI identifies more useful sequences, experiment time
was largely dominated by the time the robot took to execute
commands. As a result, we evaluate throughput increase in
terms of the decrease in the number of commands transmitted
by the interface to complete the task.

We measure three types of commands made. The first
is “action commands” i.e., the number of lower-level com-
mands or sequences chosen for execution. We also measure
every command issued by the user, including pure menu-
related commands. This method is a less direct way of
measuring the effect of sequence extraction and command
hierarchy learning since it includes noise in user control.
Finally, we measure the effective number of commands,
including menu commands, but excluding noise that did not
result in an action being made. An advantage of this method
is that it measures menu design in addition to the number
of actual commands made to the robot system. We present
all three measurements below, but analyze and simulate only
the action command series (See Table I).

A. Human Subject

Both subjects successfully completed the four phases
of both experiments. Subject 1 completed the experiments
across three sessions, while Subject 2 completed them across
two. In all cases the number of action commands necessary
to accomplish the task decreased in later phases. This is a
direct result of the increasingly useful high-level commands
learned by the HBCI.

While having results from only two subjects prevents us
from presenting a robust statistical analysis, Max Chaining
appears, at least anecdotally, to have out-performed Sequitur
in dealing with Subject 1’s noisy input. Subject 1 made two
control errors in phase 1, making the initial training data less
useful. The commands made by Subject 1 in phase 1 were
as follows (bold text represents superfluous commands, the
vertical separator divides recipe A from recipe B):

TurnLeft, GraspBlue, TurnRight, PourAndDrop,
TurnRight, GraspYellow, TurnLeft, PourAndDrop,
TurnRight, GraspRed, TurnLeft, PourAndDrop,
|| TurnRight, TurnLeft, TurnLeft, GraspGreen,
TurnRight, PourAndDrop, TurnLeft, GraspBlue,
TurnRight, PourAndDrop, TurnRight, GraspRed,
TurnLeft, TurnLeft, TurnRight, PourAndDrop

While Sequitur nevertheless extracted useful sequences from
this data, its results were “fragmented” relative to Max
Chaining, which was specifically designed to create long
sequences. This fragmentation meant some sequences ap-
peared in more parts and that some sequences had an omitted
beginning or ending portion relative to Max Chaining. This
directly contributed to a longer phase 3 for Subject 1 while
using Sequitur (see Table. I). To compare, observe Subject
1’s extracted sequences for the two algorithms going into
phase 3; these are the sequences presented to the user after
filtering and parsing to lower-level commands. The first and
second sequences returned by Max Chaining represent all or
nearly all of the commands necessary to mix whole recipes:

Algorithm 1 - Sequitur:

1) TurnLeft, GraspBlue, TurnRight, PourAndDrop, Turn-
Right, GraspYellow

2) TurnLeft, PourAndDrop, TurnRight

3695

TABLE I
NUMBER OF COMMANDS AS A FUNCTION OF PHASE AND EXPERIMENT

Phase 1 Phase 2 Phase 3 Phase 4
Action Commands
Subject 1 Sequitur 28 15 9 2
Subject 1 Max Chaining 28 13 3 2
Subject 2 Sequitur 24 10 2 1
Subject 2 Max Chaining 24 8 2 1
Action + Menu Commands
Subject 1 Sequitur 62 37 22 6
Subject 1 Max Chaining 62 34 8 6
Subject 2 Sequitur 56 24 6 3
Subject 2 Max Chaining 56 20 6 3
All Commands
Subject 1 Sequitur 72 57 34 6
Subject 1 Max Chaining 72 80 8 11
Subject 2 Sequitur 80 32 10 3
Subject 2 Max Chaining 80 28 10 3

3) GraspGreen, TurnRight, PourAndDrop, TurnLeft,
GraspBlue, TurnRight, PourAndDrop, TurnRight,
GraspRed

Algorithm 2 - Max Chaining:
1) TurnLeft, GraspBlue, TurnRight, PourAndDrop, Turn-

Right, GraspYellow, TurnLeft, PourAndDrop, Turn-
Right, GraspRed, TurnLeft, PourAndDrop

2) TurnLeft, GraspGreen, TurnRight, PourAndDrop,
TurnLeft, GraspBlue, TurnRight, PourAndDrop,
TurnRight, GraspRed, TurnLeft

3) PourAndDrop, TurnLeft, GraspBlue, TurnRight,
PourAndDrop, TurnRight

4) TurnLeft, PourAndDrop, TurnRight
In this particular test, it appears that Max Chaining’s trade-

off between closely fitting the training data and discarding
potentially useful sub-sequences was not problematic. How-
ever, without greater statistical evidence, we cannot conclude
with confidence that Max Chaining out-performs Sequitur in
this context.

Subject 2 had near-optimal control during all phases. This
meant the user did not deviate from the optimal control
sequence. In this case, Algorithms 1 and 2 returned nearly
identical results in all phases, generating similar command
counts. In phase 2, the user encountered sequences represent-
ing significant portions of each recipe. In phase 3, the user
encountered two sequences, one representing the command
for each recipe. In phase 4, a single command could be used
to complete the entire task.

B. Monte Carlo Simulation

The data from conducting the same experiments with a
simulated user generally harmonize with the results of human
subject testing. Both algorithms significantly lowered the
number of commands necessary to accomplish the assigned
task.

These simulation results support the conclusion that Max
Chaining out-performs Sequitur in the presence of noisy
control (See Table II). We applied a one-sided two-sample t-
test to the experimental results in order to test the probability

TABLE II
AVERAGE NUMBER OF ACTION COMMANDS BY SIMULATED USER AS A

FUNCTION OF PHASE AND EXPERIMENT (STD)

Phase 1 Phase 2 Phase 3 Phase 4
Sequitur - Avg Noise 26.39 (1.60) 13.25 (4.46) 5.00 (3.00) 3.24 (2.77)

Max Chaining - Avg Noise 26.48 (1.64) 13.66 (3.36) 4.67 (3.19) 2.42 (2.30)

Sequitur - High Noise 29.42 (2.92) 17.01 (5.26) 8.95 (4.39) 5.68 (3.61)

Max Chaining - High Noise 29.20 (2.66) 15.40 (3.71) 7.83 (3.88) 4.44 (3.30)

Low Noise - 2 sample t: P 8.20×10−2 9.50×10−2 4.00×10−4 2.02×10−7

High Noise - 2 sample t: P 1.11×10−1 1.41×10−8 1.03×10−5 1.17×10−8

that the Max Chaining and Sequitur results are drawn from
the same distribution. Once again, phase 1 did not involve
the use of the algorithms, but noisy control was still present.
In the average noise case, the Max Chaining experiment
happened to experience more noise than Sequitur. Despite
this, the simulated user was able to use fewer commands by
phase 4 than Sequitur (P<1%). With higher noise applied,
the Max Chaining experiment happened to experience less
noise than the Sequitur experiment in phase 1. Once again,
Max Chaining out-performed Sequitur (P<1%).

V. CONCLUSIONS

Our results suggest that learning command hierarchies via
sequence extraction offers a potentially powerful way of
enhancing the effective throughput of a BCI for robot control.
In our approach, command sequences are automatically ex-
tracted by observing patterns in the user’s command history.
The result is a form of dictionary compression over lower-
level robot commands, increasing the effective throughput
of the BCI system. As this system accumulates more usage
data, it makes a richer set of identified patterns available to
the user, leading to consistently increasing throughput.

We recommend further research in the human-computer
interaction aspects of HBCIs. One potential question is
determining the best way to present available higher-level
skills to a user. How can we help the user understand
semantically what a higher-level skill does without simply
presenting lists of lower-level commands? Also, how can
commands be connected to the state space so that only
immediately relevant commands are presented?

Our ongoing work focuses on additional ways of circum-
venting the low throughput issue for robust and efficient
brain-robot interfacing:

1) Utilizing more sophisticated machine learning and
probabilistic reasoning algorithms to handle the uncer-
tainty and noise inherent in brain-based robotic control;

2) Augmenting brain signals with other signals such as
eye movement, voice, and muscle-based commands to
explore the full-range of human biological control of
robots.

REFERENCES

[1] T. Nishiyama, H. Hoshino, K. Sawada, Y. Tokunaga, H. Shinomiya,
M. Yoneda, I. Takeuchi, Y. Ichige, S. Hattori, and A. Takanishi,
“Development of user interface for humanoid service robot system,”

3696

in Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, vol. 3. IEEE, 2003, pp. 2979–2984.

[2] R. Ambrose, H. Aldridge, R. Askew, R. Burridge, W. Bluethmann,
M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robonaut:
Nasa’s space humanoid,” Intelligent Systems and their Applications,
IEEE, vol. 15, no. 4, pp. 57–63, 2000.

[3] A. Meltzoff, R. Brooks, A. Shon, and R. Rao, “Social robots are
psychological agents for infants: A test of gaze following,” Neural
Networks, vol. 23, no. 8-9, pp. 966–972, 2010.

[4] C. Bell, P. Shenoy, R. Chalodhorn, and R. Rao, “Control of a humanoid
robot by a noninvasive brain–computer interface in humans,” Journal
of Neural Engineering, vol. 5, p. 214, 2008.

[5] Y. Chae, S. Jo, and J. Jeong, “Brain-actuated humanoid robot naviga-
tion control using asynchronous brain-computer interface,” in Neural
Engineering, 2011. NER’11. 5th International IEEE/EMBS Conference
on. IEEE, 2011.

[6] J. Millan, F. Renkens, J. Mouriño, and W. Gerstner, “Noninvasive
brain-actuated control of a mobile robot by human EEG,” Biomedical
Engineering, IEEE Transactions on, vol. 51, no. 6, pp. 1026–1033,
2004.

[7] O. C. Jenkins, “Sparse control for high-DOF assistive robots,”
Intelligent Service Robotics, vol. 1, no. 2, pp. 123–134, Apr
2008. [Online]. Available: http://www.cs.brown.edu/∼cjenkins/papers/
cjenkins isr2007.pdf

[8] M. Chung, W. Cheung, R. Scherer, and R. Rao, “Towards hierarchical
bcis for robotic control,” in Neural Engineering, 2011. NER’11. 5th
International IEEE/EMBS Conference on. IEEE, 2011.

[9] ——, “A hierarchical architecture for adaptive brain-computer inter-
facing,” in Twenty-Second International Joint Conference on Artificial
intelligence (IJCAI11), Barcelona, Spain, July 2011.

[10] M. Chung, M. Bryan, W. Cheung, R. Scherer, and R. Rao, “Interactive
hierarchical brain-computer interfacing: Uncertainty-based interaction
between humans and robots,” in Fifth International Brain-Computer
Interface Conference 2011 (BCI2011) (to appear), Graz, Austria,
September 2011.

[11] M. Bryan, J. Green, M. Chung, L. Chang, R. Scherer, J. Smith,
and R. Rao, “An adaptive brain-computer interface for humanoid
robot control,” in Humanoids, 2011 (Humanoids2011). 11th IEEE-
RAS International Conference on (to appear). IEEE, 2011.

[12] C. Nevill-Manning and I. Witten, “Identifying hierarchical structure in
sequences: A linear-time algorithm,” Journal of Artificial Intelligence
Research, vol. 7, pp. 67–82, 1997.

[13] D. J. Hachamovitch, R. A. Fein, and E. J. Fries, “Automatic word
completion system for partially entered data,” Patent US 6 377 965,
04, 2002.

[14] K.-W. Lee and K. E. Wales, “Methods and systems for implementing
auto-complete in a web page,” Patent US 7 185 271, 02, 2007.

[15] D. J. Ward and D. J. C. MacKay, “Fast hands-free
writing by gaze direction,” Nature, vol. 418, no. 6900, p.
838, 2002. [Online]. Available: http://www.inference.phy.cam.ac.uk/
mackay/abstracts/eyeshortpaper.html

[16] G. R. Müller-Putz and G. Pfurtscheller, “Control of an electrical
prosthesis with an SSVEP-based BCI,” Biomedical Engineering, IEEE
Transactions on, vol. 55, no. 1, pp. 361–364, 2007.

3697

