Continuous Vocalization Control of A Full-Scale Assistive Robot

Mike. Chung^{1*}, Eric Rombokas^{1*}, Qi An¹, Yoky Matuoka¹, and Jeff Bilmes²

¹Neurobotics Lab, Department of Computer Science and Engineering, University of Washington, Seattle, USA ²SSLI Lab, Department of Electrical Engineering, University of Washington, Seattle, USA

Major Contributions:

- Demonstrates the first instance of a full-scale robotic arm being controlled by non-verbal vocalizations to perform real world tasks.
- Introduces three different control methods. One of the control methods, inspired by the "synergy hypothesis" of neuroscience, is particularly novel.
- Studies nine users using the system to perform two real-world tasks, namely an empty bottle trashing task and a bag moving task.

Methods:

Direct Joint Angle Control: the user controls two joint DoFs at any given time. Discrete vocal sounds (e.g. [k] as in 'kick') switch currently active joints.

User Study:

Inverse Kinematics Control: two modes are available for this method, manipulation mode and position mode. Manipulation mode provides fine control over hand and wrist, while position mode moves effector position in cartesian coordinates.

(a)

(b)

- Task (a) Empty bottle trashing: six nearly empty water bottles were placed at pre-assigned positions on the table. Users' task is to deliver bottles from the table to the trashcan.
- Task (b) Bag moving task: Users' task is to move the grocery bag weighted 3kg with a flexible handle from the first tabletop to the next tabletop.
- Nine users were(delete this word) participated in four trials of each task in random ordering over two days.

Results:

Synergy Control: The synergy control method is based on movement primitives. Each primitive is a weighting of the joints that is tailored to the task. The weightings are constructed automatically from a recording of a user

completing the task using the direct joint control mode.

- (a) The mean time taken per bottle. The users are able to improve their speed for all control methods.
- (b) time taken to complete the bag task. All users are successful and able to improve their speed with practice.

© total number of bottles trashed in 5 minutes for the bottle task.

Acknowledgements: We thank Intel Research Lab Seattle for helping with the MARVIN robot, and Mark Malhotra for

