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Abstract—Creating natural and autonomous interactions with
social robots requires rich, multi-modal sensory input from
the user. Writing interactive robot programs that make use
of this input can demand tedious and error-prone tuning of
program parameters, such as tuning thresholds on noisy sensory
streams for detecting whether the robot’s user is engaged or
not. This tuning process dealing with low-level streams and
parameters makes programming of social robots time-consuming
and inaccessible for people who could benefit the most from
unique use cases of social robots. To address this challenge, we
propose the use of iterative program repair, where programmers
create an initial program sketch in our new Social Robot Program
Transition Sketch Language (SoRTSketch), a domain-specific lan-
guage that supports expressing uncertainties related to thresholds
in transition functions. The program is then iteratively repaired
using Bayesian inference based on corrections of interaction
traces that are either provided by the programmer or derived
from implicit feedback given by the user during the interaction.
Based on experiments with a human simulator and with 10
human users, we demonstrate the ease and effectiveness of this
approach in improving social robot programming and program
outputs that represent three common human-robot interaction
patterns. We also show how our approach helps programs adapt
to environment changes over time.

I. INTRODUCTION

The past decade has been marked by the rise of social
robots, with soaring interest from start-ups, large corporations,
and researchers alike. Purchasing and building social robot
hardware have been democratized through declining price
points and the availability of fabrication and physical comput-
ing tools. However, programming a social robot for a particular
application still requires specialized software development
skills. As a result, the ability to explore new applications
is limited to a small population. For example, a children’s
hospital that wants to incorporate social robots into autism-
related therapy can easily purchase a robot platform, but it
will struggle to find qualified programmers to customize the
robot for their specific needs and incur additional costs every
time the robots need re-programming.

Research on end-user programming of social robots aims
to address this problem by simplifying the programming
process to let end-users to program robots on their own.
Most prior work in this area provides a high-level application
programming interface (API) [33, 3, 14, 11, 24]), which comes
at the cost of expressivity. For example, due to the difficulty
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Fig. 1: Overview of the iterative program repair process. (1)
The programmer creates a program sketch representing a finite
state machine, or FSM, (2) the program is executed on the
robot, and a user interacts with the robot, (3) the program
is automatically repaired based on annotations over the inter-
action trace that are either provided by the programmer or
derived from implicit feedback in user inputs, (4) steps 2-3
are repeated until a satisfactory program is obtained.

of creating robust, application-independent detectors for high-
level state variables, such APIs are often limited to basic
functionality. Exposing low-level parameters to end-users to
increase flexibility of programs is also not a good option
given the difficulty of finding a set of program parameters
that yields fluent and robust human-robot interactions, even for
expert programmers [34, 14, 18]. Tuning such parameters often
involves tedious, time-consuming rounds of trial-and-error to
understand the impact of each parameter and the interaction
between combinations of parameters, and then find the right
set of parameters.

In this work, we aim to offer a middle ground, whereby
more expressive programs for social robots can be created
without exposing low-level parameters. We propose an iter-
ative program repair approach that involves creating a pre-
liminary program sketch and improving it over time through
feedback on executions of the program (Fig. 1). For example,
we envision our approach will let non-roboticist programmers
to create a set of social robot behavior templates which later
can be customized and tuned by users of the robot. We
propose a sketch language called SoRTSketch (Sec. III-A)
for representing interactive social robot behaviors as Finite
State Machines (FSMs). This language represents parameters



in an FSM transition function with hole variables and specifies
their distributions. Our proposed repair algorithm iteratively
estimates the probability distributions over these variables
based on corrections of erroneous state occurrences during
previous executions. Corrected state traces are either obtained
from the programmer, e.g., by annotating the interaction trace,
or derived from implicit feedback from the user, such as
tapping the “Go back” button after the program automatically
transitioned to the next state. We demonstrate, quantitatively
and qualitatively, how programs can be rapidly repaired using
this approach, first by using a simulated stochastic human
model and then with real human data from 10 users across
three and two social robot applications, respectively.

II. RELATED WORK

The robotics community has long been interested in ap-
plying formal methods, such as verification and synthesis, to
robotics problems. Techniques in formal verification have been
applied to assess the correctness of concurrent and time-critical
programs [12] that check both general and application-specific
properties [26]. Researchers also used program synthesis to
find a plan or a controller for navigation [13], mobile manipu-
lation [27], or multi-robot planning problems [40] that satisfy
specifications often expressed in a temporal logic language.
Other work explored alternative specification languages, such
as structured natural languages [20] or adaptations of existing
robot programs in new environments interactively with a
programmer, e.g., for robot soccer [18] or tabletop manipu-
lation [7]. Most recently, Hammond et al. introduced a system
that can automatically recover from errors incurred while
running end-user created mobile service robot programs [15].
Our work most closely relates to that of Holtz et al. on
automatically repairing robot-soccer playing programs, which
are represented as FSMs, using sparse state corrections from
a programmer with a MaxSMT solver [18, 19]. However, we
focus on repairing social robot programs using Bayesian infer-
ence and feedback provided by the human who is interacting
with the robot.

Applications of formal methods in robotics are not being
extended to include scenarios relevant to human-robot inter-
action. Formal verification is being used to ensure effective and
reliable human-robot teamwork for astronaut-robot collabora-
tion in space missions [6] and validate the safety requirements
of robotic assistants [41]. Program synthesis is being used to
create safe, human-in-the-loop controllers from high-level tem-
poral specifications [23] and programs for neuro-rehabilitation
using social robots [22]. Porfirio et al. [31] contributed a
system for authoring human-robot interaction programs for
social robots and verifying that the program meets social
norms or best practices discovered from the human-robot
interaction research community. The same researchers also
developed a system to synthesize interactive programs from
traces of two people acting out the interaction scenario [32].
While most work in this category focuses on reasoning about
high-level human-robot interaction task structure, recent work
of Kshirsagar et al. [21] involves synthesizing low-level con-

〈uniary-operator〉 ::= - | ! | abs | ...
〈binary-operator〉 ::= + | * | > | < | && | || | == | ...
〈temporal-operator〉 ::= delay | debounce | average | ...
〈expression〉 ::= k constant
| s state
| v variable
| x input
| θ hole
| 〈uniary-operator〉 〈expression〉
| 〈expression〉 〈binary-operator〉 〈expression〉
| 〈expression〉 ? 〈expression〉 : 〈expression〉 ternary operator
| 〈temporal-operator〉 ( 〈expression〉 , 〈expression〉 )

〈statement〉 ::= return s;
| if ( 〈expression〉 ) { 〈statement〉 } else { 〈statement〉 }
| 〈statement〉

〈transition〉 ::= 〈statement〉

Fig. 2: Formal syntax of SoRTSketch for representing FSM
transition functions as program sketches.

trollers for human-robot handover tasks. Similarly, our work
involves program repair at a lower level while maintaining a
high-level program structure.

III. APPROACH

Our approach, summarized in Fig. 1, starts with a program-
mer creating a program sketch that is iteratively refined it
through interactions with a user. We now describe this process
in details.

A. Program Sketches

A program sketch is a partial program that encodes the high-
level structure of a solution while leaving low-level details
unspecified [38]. Program details of a program can be left
unspecified using hole variables that are later derived by the
repair algorithm. In this paper, we present SoRTSketch (So-
cial Robot Program Transition Sketch Language), a domain-
specific language for sketching social robot behaviors based
on finite state machines (FSMs) with transitions that are not
fully specified.

1) FSM description: SoRTSketch is based on FSMs, widely
used to represent robot behaviors [8, 33, 4, 28, 29, 25,
37, 9, 1]. Specifically, we represent social robot behaviors
as discrete-time Mealy machines with continuous inputs and
outputs and program variables. Formally, our FSM is a tuple
(S, S0, V, V0,Σ,Λ, T ), where S is a finite set of states, S0 is
the start state, V is a finite set of program variable values, V0

is the start program variable values, Σ ∈ Rn are continuous
inputs (obtained from robot sensors), Λ ∈ Rm are continuous
outputs (executed as robot actions), and T : S × V × Σ →
S × V × Λ is a transition function. At each time step t, the
transition function is executed to update the state st+1 ∈ S and
program variables vt+1 ∈ V (an update could be st+1 = st
or vt+1 = vt) and to output a robot action to be triggered in
next time step λt+1 ∈ Λ (could be noaction).

2) Language description: A transition function in SoRTS-
ketch consists of an if-else statement that checks the values
of variables derived from the current FSM state s ∈ S,
variables vt ∈ V , and sensor inputs (x1

t , ..x
n
t ) ∈ Σ. It

assigns values of the new FSM state st+1 ∈ S, variables



vt+1 ∈ V , and output action at+1 ∈ Λ, accordingly. Sketching
capabilities leverage the fact that the condition expressions in
if statements can include hole variables instead of constants.
Fig. 2 shows part of the formal syntax for representing
transition functions in SoRTSketch.

As an example, consider an interactive storytelling social
robot. To ensure the user pays attention while the story
unfolds, the robot can move into a paused "wait" state
whenever it detects that the user has disengaged. This requires
the transition function to encode disengagement in the if
expression, by comparing an input variable (such as the
person’s gaze direction faceYawAngle) with a threshold
maxEngagedAngle. Where conventional programs would
require assigning maxEngagedAngle to a constant, SoRTS-
ketch lets the variable be added to a list of hole variables for
later repair.

Programmers can create a hole variable whenever they are
uncertain about the exact value of a constant needed for
the transition function. Further, they must also specify the
distribution of the variable as a probability density function
(e.g., Bernoulli). As described in Sec. III-C, this lets the repair
algorithm treat hole variables as random variables in Bayesian
inference.

3) Temporal operators: Due to noise in a robot’s sensory
inputs, knowing only the latest value of sensory inputs can
be insufficient for creating fluent human-robot interactions.
Therefore, SoRTSketch includes three temporal operators that
have access to the history of a sensory stream:

1) average(x, τ) returns the average value of an input
variable x over the specified duration τ into the past;
i.e., between t− τ and t.

2) delay(x, τ) returns the value of an input variable x
from duration τ into the past; i.e., it creates an input
stream delayed by τ .

3) debounce(expression, τ) returns the conjunction
of the boolean expression involving an input variable,
over the specified duration τ into the past.

As an example, if the faceYawAngle input variable
is known to be noisy, an if expression could compare
average(faceYawAngle, historyDuration) to a
threshold maxAverageEngagedAngle, where both dura-
tion and threshold variables could be holes.

4) Example program: Fig. 3 shows instantiations of dif-
ferent categories of expressions with holes in a transition
function implemented with SoRTSketch for the storytelling
robot behavior. For example, it shows: how holes can represent
uncertainty in deciding which operator to use (useAvgOp);
the use of multiple sensory streams (faceYawAngle and
voiceLevel) over time; within a complex expression with
multiple parameters, to represent high-level concepts like en-
gagement; and how to make decisions about state transitions.

B. State Traces and Corrections

1) Program execution: SoRTSketch program sketches are
executable even before they are repaired. For example, the

Category Variable name Example value

constant nSentences 10
state curState "read"
variable curSentenceIndex, hold 1, false
input faceYawAngle, voiceLevel, sayFinished,

goBackTapped, nextTapped
7, 0.1, 0,
0, 0

hole minDisengagedAngle, disengagedTimeout,
maxEngagedAngle, engagedTimeout,
speakingWindow, minSpeakingLevel,
useAvgOp

15, 1500,
30, 500,
1000, 0.4,
true

sayFinished &&
humanAvailable && 

!allDone

sayFinished && 
humanBusy && 

!allDone ||
goBackTapped

sayFinished && 
allDone

humanAvailable ||
nextTapped

read

wait stop

1 lookingAtRobot = debounce(abs(faceYawAngle <
minDisengagedAngle), disengagedTimeout);↪→

2 lookingAway = debounce(abs(faceYawAngle >
maxEngagedAngle), engagedTimeout);↪→

3 speaking = useAvgOp ? average(voiceLevel,
speakingWindow) > minSpeakingLevel :
debounce(voiceLevel, speakingWindow) >
minSpeakingLevel;

↪→
↪→
↪→

4 allDone = sayFinished && (curSentenceIndex ==
nSentences)↪→

5 humanAvailable = !lookingAtRobot && !speaking;
6 humanBusy = lookingAway || speaking;

7 if (curState == "read" && sayFinished &&
humanAvailable && !allDone) {↪→

8 return "read";
9 } else if (curState == "read" && (sayFinished &&

humanBusy && !allDone || goBackTapped)) {↪→
10 return "wait";
11 } else if (curState == "read" && sayFinished &&

allDone) {↪→
12 return "stop";
13 } else if (curState == "wait" && (humanAvailable ||

nextTapped && !hold))) {↪→
14 return "read";
15 }

Fig. 3: An example program in SoRTSketch. (top) Instantiation
of SoRTSketch in a storytelling social robot domain with
defined constants, inputs, variables, and holes; (middle) the
social robot used this paper and an FSM visualization for
the storytelling program; (bottom) transition function program
with variable definitions and if-else statements.

holes can be set to the sampled values from the given distri-
butions. When SoRTSketch programs are executed on a robot,
users can interact with the robot in different ways. We refer to
a sequence of inputs I = [(x1

1, ...x
n
1 ), ..., (x1

T , ...x
n
T )] received

over T steps as an input trace and the state values resulting
from running the FSM, O = [s1, ..., sT ] as a state trace. If
the program’s hole variables are assigned to a set of “good”
values, i.e., ones that make the robot behave exactly as the
programmer intended during the interaction, the state trace
for that interaction can be considered correct.

However, interactions with a program before hole variables
are adjusted through program repair often involve errors. We
can measure the correctness of program execution based on the
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overlap between the state trace of that interaction and the state
trace of a program that behaves exactly as the programmer
intends. Given a state trace, the programmer can annotate the
incorrect states and correct the robot’s state.

2) Implicit state correction: Correcting state traces of user
interactions requires programmers to be in-the-loop after de-
ployment. While feasible, this might be redundant in some
cases where the interaction trace itself contains information
about errors that occur. In particular, two types of transition
errors that occur during FSM executions can cause errors in
state traces.

1) Incorrect transition, which occur when the robot makes
a transition to a different state when it was supposed to
remain in the same one.

2) Missed transition, which occur when the robot remains
in the same state when it was supposed to transition to
a different one.

For instance, the robot in the storytelling example might make
an incorrect transition from the "wait" state to the "read"
state if minSpeakingLevel or speakingWindow is set
too low, i.e., the robot mistakenly assumes the user finished
speaking. These two types of transition errors can derail an
interaction if no way to recover. An example of a recovery
mechanism is the use of “Go back” and “Next” buttons (or
other input commands, such as speech or gesture) that let the
user to guide the interaction when faced with incorrect and
missed transitions.

These mechanisms for repairing the interaction can also
serve as implicit feedback for repairing the program; the use
of interaction repair mechanisms in the state trace can be con-
verted to corrected state traces usable by the repair algorithm.
Alg. 1 shows how this is achieved. A user tapping “Go back”
button indicates that the previous transition was incorrect;
hence, all states between the last transition and the button
tapping in the trace should be annotated as the previous state

Algorithm 1 ImplicitStateCorrection

Input: State trace O = [s1, ..., sT ] and window size W
Output: Corrected state trace O′

1: Initialize j to 1
2: for i = 2, ..., T do
3: if si 6= si−1 then
4: if GoBack(si−1) = si then
5: sj ← si, ...si−1 ← si
6: else if Next(si−1) = si then
7: smax(i−W,1) ← si, ...si−1 ← si
8: end if
9: j ← i− 1

10: end if
11: end for
12: O′ = [s1, ..., sT ]

value. A user tapping the “Next” button indicates a missed
transition; in this case, all past states within a predefined
window size W should be annotated as the next state value.

C. Iterative Program Repair

Given a program sketch and corrections over program
interaction traces, program repair aims to find the best set
of program parameters represented by hole variables in the
sketch. We present the first algorithm that achieves this by
searching over all combinations of parameter value assignment
combinations, as summarized in Alg. 2. Hole variables Θ1 are
initialized based on the variable distribution the programmer
provides. The program is then executed to obtain an input trace
I1 and corrected state trace Ô1. The main update step involves
evaluating the following equation:

Repair(K, I,O) = argmax
Θ

|I|∑
j=1

Overlap(K[H := Θ](Ij), Ôj).

Given an initial program sketch K and all program input traces
I = (I1, ..., Ii) and corrected state traces O = (Ô1, ..., Ôi) up
to the current iteration i, the goal is to find the hole variable
values that maximize the total overlap between corrected state
traces O and output state traces from executing the program
sketch with those hole variable values K[H := Θ]. Intuitively,
the algorithm searches for the hole values that make the
program as consistent as possible with the corrected state
traces.

This approach requires saving all traces of a program, which
is not memory-efficient, and solving a harder satisfiability
problem as increasing numbers of traces are obtained. Also,
the user’s behavior or the operation environment may change
over time, in which case using all past traces could degrade
performance. To address these issues, we propose an alterna-
tive algorithm, Alg. 3, that uses Bayesian filtering, a technique
commonly applied to analyze sequential data. The main update
step involves evaluating the following equation:

BayesRepair(K, Ii, Ôi) = argmax
Θi

Pr(Θi|Ôi;K, Ii), (1)



Algorithm 2 IterativeRepair

Input: Program sketch K and initial values for holes Θ1

1: initialize I and O to empty sets
2: for i = 1, 2, ... do
3: run the program K[H := Θi] and record program

inputs Ii and output state trace Oi
4: Ôi ← IMPLICITSTATECORRECTION(Oi)
5: add Ii and Ôi into I and O, respectively
6: Θi+1 ← Repair(K, I,O)
7: end for

Algorithm 3 IterativeBayesRepair

Input: Program sketch K and prior Pr(Θ1)
1: for i = 1, 2, ... do
2: run the program K[H := Θi] and record program

inputs Ii and output state trace Oi
3: Ôi ← IMPLICITSTATECORRECTION(Oi)
4: Θi ← BayesRepair(K, Ii, Ôi)
5: Pr(Θi+1)← Pr(Θi|Ôi;K, Ii)
6: end for

where:

Pr(Θi|Ôi;K, Ii) =
Pr(Ôi|Θi;K, Ii) Pr(Θi)∑|O|
j=1 Pr(Ôj |Θj ;K, Ij) Pr(Θj)

(2)

and the likelihood function is a percentage overlap function

Pr(Ôi|Θi;K, Ii) ∝ Overlap(K[H := Θi](Ii), Ôi). (3)

At every iteration i, the algorithm first computes the posterior
(2) and then uses a maximum a posteriori (MAP) estimation
to determine hole variable values (1). The subsequent repair
starts by setting the new prior to the current posterior using

Pr(Θi+1)← Pr(Θi|Ôi;K, Ii).

At a high level, IterativeBayesRepair compactly encodes in-
formation from the past into the prior Pr(Θi) instead of
computing it from stored data at every iteration. For the repair
algorithms in both approaches, we use an exhaustive enumer-
ation algorithm by binning parameter spaces into discrete sets.

We built the entire system in JavaScript. We used Cycle.js
framework [39] to implement robot behaviors as Cycle.js
applications and tools for recording and replaying interaction
traces. The repair algorithms and ImplicitStateCorrection were
implemented from scratch.

IV. EVALUATION

To evaluate the feasibility and effectiveness of our approach,
we conducted: (1) a simulation experiment using stochastic hu-
man simulators, (2) a human experiment with 10 participants
and a tabletop robot.

A. Social Robot Tasks

We evaluated the repair of three human-robot interaction
programs. Each represents an interaction pattern that is com-

mon across social robot application domains [35, 10, 2, 5, 36,
14], as described below:

1) Storytelling: The robot reads a story line-by-line until
the story ends. The robot should pause the reading when
the user looks away or interrupt the robot by speaking to it.
The robot should resume the reading when the user looks at
the robot and no longer speaks. During the interaction, the
robot offers “Pause” and “Resume” buttons to let the user to
manually control it in case it incorrectly pauses or resumes the
reading. The storytelling scenario captures how robots handle
engagement and disengagement patterns [5, 14].

2) Neck Exercise: The robot instructs the user to perform
a sequence of neck exercises. It should display “Tilt your
head to the LEFT” and move on to the next instruction when
it detects the user has correctly followed the first one. The
robot repeats the two different instructions three times (i.e., six
instructions in total). During the interaction, the robot offers
the “Next” and “Go back” buttons to let the user manually
switch to the next or previous instruction in case the robot does
not detect or incorrectly detects the user’s action. The neck
exercise represents instruction and monitor patterns [36] that
require the robot to detect the human action, either to verify
completion of an instructed task or as an input mechanism.

3) Open-Ended Q&A: The robot asks a series of open-
ended questions. It displays each question on the screen and
waits for the user’s verbal response. While waiting, the robot
should be aware of the user’s use of gaze-aversion for holding
the conversation floor [2]. When the robot detects the user
has finished answering the question, it should ask the next
one, for a total of five questions. During the interaction, the
robot offers the “Next” and “Go back” buttons to let users
manually switch to the next or previous question in case it
mistakenly does or does not move on correctly. Open-ended
Q&As represent the turn-taking pattern, which requires the
robot to detect multi-model turn-yielding signals [35, 10, 2].

Each interaction program has a transition function that
depends on features computed from continuous sensor streams
of the robot. We repaired 5 (storytelling), 3 (neck exercise),
and 7 (Q&A) FSM transition parameters across 2, 2, and 1
transitions, respectively.

B. Simulation Experiment

To systemically evaluate our approach with larger amounts
of data, we created a human simulator to obtain FSM input
traces and ground truth state traces for each interaction. The
human simulators started with an initial human intention (e.g.,
engage or disengage), which changed its value after a time
interval sampled from a predefined uniform distribution per
interaction. We created ground truth state traces by sampling
values from the simulated intention traces at the robot sensor
streaming frequency (10hz). FSM input traces were created by
simulating sensor input values using the uniform distributions
defined per each intention and interaction. To emulate an
experiment involving real human users, we selected simulator
parameters based on data collected from author interactions
with the robot for each interaction. For the storytelling, neck
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Fig. 5: Results from the simulation experiment. (left) Percentage overlap over five repair iterations using IterativeRepair
(labeled as search) and IterativeBayesRepair (labeled as bayesian) algorithms across three tasks (storytelling, neck exercise,
Q&A). (middle) Computation time of the algorithms for the same settings. (right) Overlap percentage over five repair iterations
for the IterativeBayesRepair algorithm using clean and noisy state corrections for repair. Error bars show standard deviations.

exercise, and open-ended Q&A interactions, the human simu-
lator stopped when it changed the ground truth states 5, 5, 6,
respectively, and the average total duration of 100 simulated
FSM input traces was 27.02 (SD = 5.53), 52.55 (SD = 5.05),
61.63 (SD = 6.78) seconds, respectively.

1) Procedure: We first simulated 100 input traces and
ground truth state traces as a test dataset. At each itera-
tion, we simulated a new FSM input trace and desired state
trace pair and then applied the IterativeRepair (Alg. 2) and
IterativeBayesRepair (Alg. 3) to acquire a set of repaired
parameters. For the IterativeBayesRepair, we compared using
the ground truth state trace to using the noisy state trace for
repair, where the latter represented noisy corrections provided
by the real programmer or user. The noisy state trace was
computed by adding uniform noise of [−2, 2] to every human
intention change that occurred when generating the ground
truth state (Sec. IV-B); total noise duration could at worst
equal 37% of task duration.1 The ±2 seconds window size was
selected based on observing two first time users in an informal
study. Repaired parameters were then used to produce a set
of FSM output states using the set of FSM input traces in the
test dataset. We initialized program parameters so the initial
program always produced the missing transition errors. We
repeated this procedure 64 times (using the same test dataset),
with each run producing a different training input sequence.

2) Measures: We measured the interaction quality of the
repaired programs as the percentage overlap (Eq. 3) between
the output state trace and the ground truth state traces in the
test dataset. Although this overlap had limitations—such as
its sensitivity to the interaction length we controlled in this
experiment—it captured interaction timing, an important factor
in human-robot interaction [17]. We also measured the speed
of repair algorithms in milliseconds to gauge the feasibility of
repairing a program in front of a real user.

3) Results: IterativeRepair and IterativeBayesRepair al-
gorithms performed similarly in terms of interaction qual-
ity(Fig. 5left). Both algorithms’ average percentage overlaps
increased monotonically over the five iterations, reached aver-
age overlaps above 95% by the third iteration, and produced
standard deviations lower than 9% by the final iteration in

1Calculated by 2s × 5 state changes/ 27.02s = 37% (storytelling)

all three tasks. The average computation time for Iterative-
BayesRepair remained constant over repair iterations, while
that for IterativeRepair grew linearly (Fig. 5middle). Using
the noisy state corrections decreased performance (Fig. 5right).
Nonetheless, for all three tasks, the final iteration reached 91%
mean overlap (with below 14% standard deviation).

C. Human Experiment

To evaluate the full implementation in a realistic setting,
we conducted a human experiment. Ten participants interacted
with a robot for the neck exercise or open-ended Q&A
scenarios (Sec. IV-A) over four repair iterations.

1) Robot Platform: We used a custom-built social robot
TaRo (Tablet Robot). The TaRo consists of a face, GeeekPi
7inch touchscreen for displaying messages and facial expres-
sion and a neck, 5-DoF Open MANIPULATOR-X robot arm
for making head gestures such as nod and shake. It also had
access to a speaker, a webcam, and a microphone attached to
the connected computer, which the robot used to play text-
to-speech outputs or to estimate face poses of a human user
(using PoseNet [30]) and loudness of the environment at the
synchronized frequency of 10hz.

2) Procedure: The 10 participants (three females) were
recruited from the University of Washington (UW) campus
community through mailing lists. Their average age was 23.2
(SD = 5.58). Upon their arrival, the researcher explained the
study’s purpose, introduced the robot and demonstrated how
to interact with it. The first five participants were asked to run
the neck exercise and open-ended Q&A programs in order.
The last five were asked to do the same in the reverse order.
For each task, participants were asked to interact with the
robot for four iterations and to reply to the questionnaire
after each iteration. Over the four iterations, FSM transition
parameters were repaired using IterativeBayesRepair. After
each iteration, the desired state traces for IterativeBayesRepair
were acquired from participants’ recorded button tap inputs us-
ing ImplicitStateCorrection (Alg. 1). All transition parameters
were initialized to make the robot not respond to users except
when they tapped buttons like “Go back.”

3) Measures: Objective measures of program interaction
quality included (1) the percentage overlap before and after
the repair, and (2) the number of user inputs needed to correct
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Fig. 6: Results from the user study of four repair iterations
averaged across 10 participants. (left) Percentage overlaps
before and after repair. (middle) Average number of interaction
corrections (e.g., tapping “Go back”) used as implicit feedback
for repair. (right) Subjective ratings (reversed as appropriate,
with higher values representing more fluency).

transition errors, i.e., button taps. Percentage overlaps were
calculated using the state trace generated with the transition
parameters before or after the repair and the desired state
trace acquired from the human user in each iteration. We also
gathered subjective measures of interaction quality, asking for
user agreement with the statements:
• “I had to carry the weight to make the human-robot

interaction better.” (reverse scale)
• “I trusted the robot to do the right thing at the right time.”
• “The robot contributed to the fluency of the interaction.”

Available answer choices were 1 (strongly disagree) through 5
(strongly agree). We selected these questions from Hoffman’s
questionnaire, which was designed to measure the perceived
fluency of a human-robot interaction [16]. To investigate the
source of potential failures, we asked the open-ended question
“What problems did you experience while interacting with the
robot during the taskname activity?” in addition to the other
questions after participants completed each task.

4) Results: All average objective measures of interaction
quality, except after-repair percentage overlaps, increased over
the four iterations of the two tasks (Fig. 6). We observed (1)
a consistent increase in the average before-repair percentage
overlap measures, (2) a consistent decrease in the average
number of corrective human inputs measures, and (3) a
consistent increase in the average subjective ratings between
every pair of consecutive iterations. Between the first and last
iterations, before-repair percentage overlaps increased from M
= 0.33 & SD = 0.08 to M = 0.80 & SD = 0.30 for the neck
exercise, and M = 0.36 & SD = 0.08 to M = 0.57 & SD =
0.21 for open-ended Q&As. In both scenarios, initial programs
always required participants to tap a button to proceed, i.e., the
number of corrective human inputs were 6 and 5, respectively,
but the numbers dropped to 0.25 (SD = 0.25) and 2.88 (SD
= 2.88), respectively, by the fourth iteration. Subjectively,
participants did not initially perceive the interactions as being
fluent (M = 2.00 & SD = 1.34 for neck exercise; M = 2.20
& SD = 1.37 for open-ended Q&A); however, they eventually
perceived them as being slightly fluent by the last iteration (M
= 4.13 & SD = 1.07 for neck exercise, M = 3.83 & SD = 0.88
for open-ended Q&A).
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Fig. 7: Example interaction traces in the neck (top) and Q&A
(bottom) scenarios that qualitatively demonstrate the impact of
program repair. Undetected human inputs and state annotations
are highlighted in red.

We analyzed the system logs of the three participants who
thought the interaction had not improved by the last iteration.
One said of the Q&A task, “The robot over time got very fast
in skipping questions while I’m still talking.” We observed
that our approach did not improve interaction quality when
unexpected sensor values occurred or the user did not fix
incorrect transition errors. For example, some participants
frequently moved out of the robot’s field of view, while others
did not tap the “Go back” button when the robot skipped to
the next question; both behaviors caused the algorithm to find
ineffective or even counterproductive parameters.

To demonstrate the qualitative differences in human-robot
interactions before and after the repair, we present two pairs of
interaction traces selected from the user study (Fig. 7). In the
neck exercise example (above), the program parameters used
in the second iteration made the robot incapable of detecting
the user following the instruction action. The user noticed
this and tapped the “Next” button to make the robot move
onto the next state. After the repair in the third iteration, the
robot was able to promptly move onto the next state when the



TABLE I: Percentage overlaps before and after the repair,
and the number of human inputs measured in the behavior
adaptation experiment.

repair iteration 1 2 3 4 5 6
environment description quiet quiet quiet noisy noisy noisy

% overlap before 33.12 99.88 99.92 17.90 57.70 75.42
% overlap after 94.56 99.88 99.92 99.97 99.92 99.93

number of human inputs 5 0 0 5 3 2

user followed the robot’s instructions. In the open-ended Q&A
example (below), the program parameters used in the second
iteration made the robot unable to detect whether the human
is not looking at the robot to hold the conversation floor and
hence caused the robot to skip to the next question when the
human stops speaking. The user then tapped the “Go back”
button to continue answering now the previous question. The
system used this input to annotate the part of state trace in
which the robot accidentally moved onto the next state. After
the repair in the fourth iteration, the user again looks away
from the robot and stops speaking but the robot waits until the
user looks back at the robot to move on to the next question.

5) Robot Behavior Adaptation Experiment: To demonstrate
how our approach handled changes in environment that impact
a program’s interaction quality, we conducted an experiment
involving one user who also participated in the previous human
experiment. This user interacted with the robot that ran the
open-ended Q&A FSM over six repair iterations; the first
three occurred in a quiet room, and the last three in a noisy
open indoor area. Between all iterations, we applied Itera-
tiveBayesRepair. We measured before and after percentage
overlaps and the number of corrective human inputs. Table I
shows these results. The interactive quality of the program
quickly improved when the experiment took place in the quiet
room (e.g., the required number of human inputs dropped
from 5 to 0). The program performed poorly immediately
after changing its environment, i.e., the % overlap dropped
from 99.82% to 17.90%, and the number of human inputs
increased from 0 to 5 but slowly improved in subsequent
iterations. Based on analyzing the system log, we found that
the improvement over the last three iterations was smaller
and took a longer time than that over the first three iterations
because (1) the noisy environment produced signals with larger
variance, which made the repair more challenging, and (2) the
system had to update the prior that was tuned for the first
environment, i.e., it had to partially re-learn how to interact
with humans.

V. DISCUSSION AND FUTURE WORK

We believe the results demonstrate the usefulness of the
proposed approach, with some limitations.

In the human experiment results, we observed that three
users did not fix the incorrect transition that occurred during
the open-ended Q&A interaction. We anticipate that users will
be more likely to provide adversarial feedback as a robot
behavior FSM becomes more complex or an input mechanism
for corrective feedback becomes more noisy. Hence, it will

be necessary to identify robot behavior FSM design patterns
or guidelines for creating interactions that avoid problematic
feedback for repair tasks and to investigate intuitive recovery
methods for resetting inappropriately repaired parameters.

While the proposed algorithms improved interactions mea-
sured in our experiments, we expect the following modifica-
tions will make them more useful. The proposed algorithm
for realizing programmer-free repair, ImplicitStateCorrection,
requires the window size parameter to correct the missing
transition error. Investigating an effective way to remove this
requirement, e.g., by using a credit assignment strategy in-
stead, may help with handling more complex interactions. The
complexity of the core IterativeBayesRepair uses exhaustive
search, which grows exponentially with respect to the number
of transitions, not the number of hole variables. Finding a more
scalable inference algorithm or one that does not require any
prior distributions for hole variables may increase usability
and applicability.

Returning to the goal of our research (Fig. 1), we aim
to make program repair ultimately benefit end-users who
are not proficient software developers. To that end, further
research in the workflow for enabling end-users to create
and tune robot behaviors by themselves, e.g., by providing
a graphical user interface for creating initial FSMs with a list
of templates, is imperative. It is also important to further test
our approach in the wild and for long-term scenarios where
user preferences and environments may change over time to
surface and investigate issues that arise.

VI. CONCLUSION

This paper presented an iterative program repair approach
for creating robust and fluent social robot programs without
painstakingly tuning program parameters. Our approach helps
programmers to implement robot programs without complete
low-level details and incrementally repair programs over time
using corrective feedback provided by the programmer or the
robot’s user. We examined the feasibility and effectiveness of
our approach via two experiments involving human simulators
and 10 real human users across three representative social
robot use cases; results demonstrate the utility and potential
of the proposed approach.
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