
SOBORO: A Social Robot Behavior Authoring Language
Michael Jae-Yoon Chung and Maya Cakmak

mjyc,mcakmak@cs.washington.edu
Computer Science & Engineering

Seattle, Washington, USA

ABSTRACT
We present a SOcial RoBOt BehavioR AuthOring (SOBORO) lan-
guage that enables rapid prototyping of interactive behaviors via
declarative specification. SOBORO supports trigger-action program-
ming like and imperative scripting like specifications that enable
non-roboticist programmers to express complex interactive behav-
iors in a concise and declarative syntax. To run the specified behav-
iors on a robot in a language-agnostic way, the SOBORO compiler
compiles SOBORO programs into functional reactive programs that
can be implemented with a cross-platform reactive programming li-
brary. We presents two example SOBORO programs, demonstrating
its richness in expressing both progressive and reactive interactive
behaviors.

KEYWORDS

ACM Reference Format:
Michael Jae-Yoon Chung and Maya Cakmak. 2022. SOBORO: A Social Robot
Behavior Authoring Language. In Proceedings of International Conference on
Human-Robot Interaction (HRI). ACM/IEEE, Online

1 INTRODUCTION
Social robots are becoming increasingly ubiquitous across domains
including entertainment, education, social-emotional learning, and
mental health support, among others. Programming social robots
to be robust, effective, and engaging for every unique use case and
environment remains a bottleneck given the complex multi-modal,
interactive nature of desired robot behaviors.

Research on end-user programming of social robots aims to ad-
dress this problem by simplifying the programming process to let
end-users to program robots on their own [2, 5, 6, 8, 9, 11, 14].
These simplifications often come at the cost of expressivity, i.e.,
robot behaviors obtainable using simplified languages are not as
rich as ones created using general-purpose languages by robotics
expert programmers. In the industry, personal robot companies
took a similar approach, e.g., by providing software development
kit (SDK) and application programming interfaces (API) to their
customers so the customers can develop robot applications by them-
selves [1, 12, 16]. However, programming robots was not a trivial
task for customers. Even if they could develop robot applications by
themselves, having to re-program the application whenever they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HRI, March 07–10, 2022,
© 2022 Association for Computing Machinery.

wanted to consider a different robot platform made it too expensive
to invest their time and resources in developing robot applications.

In this paper, we present a domain-specific language for SO-
cial RoBOt BehavioR AuthOring (SOBORO). SOBORO simplifies
programming interactive behaviors involving multi-modal asyn-
chronous inputs and outputs by first defining two input types–event
and state–and two output types–action and controller–and second
providing ways to map inputs and outputs, e.g., in the same or
different types. Using SOBORO, programmers can declaratively
specify interactive behaviors using both trigger-action program-
ming and imperative-scripting like syntax. The SOBORO compiler
compiles SOBORO programs into functional reactive programs that
can be implemented using a cross-platform reactive programming
library like ReactiveX1. In contrast tomany existing social robot pro-
gramming systems developed by researchers targeting non-experts,
SOBORO treats behavior authoring as declarative specification tar-
geting programmers who have a limited budget on the behavior
authoring task. We present two example SOBORO programs rep-
resenting progressive and reactive interactive behaviors of social
robots to demonstrate SOBORO’s expressivity and ease-of-use.

2 RELATEDWORK
Research work on end-user programming of social robots often
adopts visual programming approach to simplify the complexity of
the programming process, e.g., by exposing a flowchart program-
ming interface [2, 8, 9, 14] or block programming interface [5, 6, 13].
Perhaps a more closely related approach uses a textual program-
ming approach [11]. Our work is similar In the spirit of simplifying
social robot programming, however, we consider programmers who
do not want to spend much time as the target users.

Our work is also related to SDKs and APIs provided by per-
sonal robot companies with their robot platform. These SDKs and
APIs support event-driven programming using the event loop pro-
vided by JavaScript runtime environments [12], Python standard
library [1], or a custom library [16]. While providing SDKs and
APIs may be the most general approach, we believe such generality
makes them too difficult or tedious to use, even for programmers
who have a limited time budget. SOBORO is a domain-specific
language that aims to balance the expressivity and ease-of-use
trade-off.

Programmers often use the provided APIs to create interactive be-
haviors in abstract representations such as finite-state machine [3],
behavior tree [7], or petri-nets [4]. These abstract representations
have natural visualization (e.g., flowchart for finite-state machine)
on which some visual interface-based systems mentioned earlier
are built. SOBORO is a domain-specific language built on top of a
functional reactive programming language. It could be extended to

1https://reactivex.io/

https://reactivex.io/

HRI, March 07–10, 2022, Michael Jae-Yoon Chung and Maya Cakmak

⟨behavior ⟩ ::= ‘[’ ⟨rule⟩, ⟨rule⟩, ... ‘]’

⟨rule⟩ ::= ⟨when-expr ⟩ | ⟨while-expr ⟩

⟨when-expr ⟩ ::= ⟨when⟩ ⟨event-expr ⟩ ⟨action-expr ⟩
| ⟨when-expr ⟩ ‘THEN’ ⟨action-expr ⟩

⟨when⟩ ::= ‘WHEN’ | ‘WHENEVER’

⟨while-expr ⟩ ::= ⟨while⟩ ⟨state-expr ⟩ ⟨controller-expr ⟩

⟨while⟩ ::= ‘WHILE’ | ‘WHILEVER’

⟨event-expr ⟩ ::= 𝑒𝑚𝑝𝑡𝑦 | 𝑒𝑣𝑒𝑛𝑡
| ⟨op1-input ⟩ ⟨event-expr ⟩
| ⟨event-expr ⟩ ⟨op2-input ⟩ ⟨event-expr ⟩
| ⟨event-expr ⟩ ‘is’ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
| ⟨event-expr ⟩ ‘and’ ⟨state-expr ⟩

⟨action-expr ⟩ ::= 𝑒𝑚𝑝𝑡𝑦 | 𝑎𝑐𝑡𝑖𝑜𝑛
| ⟨action-expr ⟩ ⟨op2-output ⟩ ⟨action-expr ⟩
| ⟨action-expr ⟩ ‘and’ ⟨controller-expr ⟩

⟨state-expr ⟩ ::= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑠𝑡𝑎𝑡𝑒
| ⟨op1-input ⟩ ⟨state-expr ⟩
| ⟨event-expr ⟩ ⟨op2-input ⟩ ⟨state-expr ⟩
| ⟨state-expr ⟩ ‘is’ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

⟨controller-expr ⟩ ::= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 | 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
| ⟨action-expr ⟩ ⟨op2-output ⟩ ⟨controller-expr ⟩
| ‘repeatedly’ ⟨action-expr ⟩

⟨input-op1⟩ := ‘not’ | ...

⟨input-op2⟩ := ‘or’ | ‘and’ | ...

⟨output-op2⟩ := ‘or’ | ‘and’ | ...

Figure 1: SOBORO Syntax

support implementing the behaviors in the aforementioned abstract
representations, however, SOBORO focuses on supporting the two
dominant programming paradigms for social robot programmers:
trigger-action and imperative [6, 10].

3 SOBORO DOMAIN-SPECIFIC LANGUAGE
SOBORO is a domain-specific language that its programs can be
compiled into functional reactive programs. Based on our previ-
ous research on understanding the challenges with programming
social robot behaviors [6, 10], we designed SOBORO to (1) enable
programmers to effortlessly express complex interactive behaviors
using both trigger-action and imperative programming paradigms
and (2) have straightforward and reasonable semantics that enables
analyzing pragmatically, if needed.

3.1 Input and Output Types
At a high level, SOBORO programs can be considered as a set of
trigger-action rules (i.e., functions) where both triggers (i.e., inputs)
and actions (i.e., outputs) are data streams. We identify two distinct
types of inputs: events and states. An event is the occurrence of some
change at a specific point in time and a state is a condition whose
value can be evaluated and accessed at any given time. We also
identify two distinct types of outputs: actions and controllers. An
action is an instantaneous signal for starting a movement that even-
tually comes to an end and a controller are conditions representing
a control signal for an actuator.

3.2 Syntax
Figure 1 defines the syntax of SOBORO. The ⟨𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 ⟩ definition
describes an interactive behavior as a list of ⟨𝑟𝑢𝑙𝑒⟩-s, defining map-
pings between events and actions via ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩ and states and
controllers via ⟨𝑤ℎ𝑖𝑙𝑒-𝑒𝑥𝑝𝑟 ⟩. The ⟨𝑒𝑣𝑒𝑛𝑡-𝑒𝑥𝑝𝑟 ⟩ defines the event
composition expression and the ⟨𝑎𝑐𝑡𝑖𝑜𝑛-𝑒𝑥𝑝𝑟 ⟩ defines the action
composition expression; they let programmers express custom trig-
ger events and complex activation signals, respectively. Similarly,
the ⟨𝑠𝑡𝑎𝑡𝑒-𝑒𝑥𝑝𝑟 ⟩ defines the state composition expression and the
⟨𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 -𝑒𝑥𝑝𝑟 ⟩ defines the controller composition expression.
SOBORO requires programmers to specify the input and output
types explicitly. For example, combining event and state or action
and controller is only allowed in specific ways, i.e., via ⟨𝑠𝑡𝑎𝑡𝑒-𝑒𝑥𝑝𝑟 ⟩
involving and and ⟨𝑎𝑐𝑡𝑖𝑜𝑛-𝑒𝑥𝑝𝑟 ⟩ involving and, respectively. The
term–‘repeatedly’ ⟨𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 ⟩–can be used to convert the
action output type to the controller output type.

To make programming sequential action execution behaviors
easy, SOBORO supports chaining multiple action expressions using
the ‘THEN’ keyword which triggers the specified activation signal
only when the last action triggered in the chained ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩ has
finished successfully. The ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩ involving ‘THEN’ is a con-
venient syntax that can be expressed with multiple ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩-s.
SOBORO also allow programmers to control the number of times to
respond to the trigger events using the keywords like ‘WHEN’ and
‘WHENEVER’; using ‘WHEN’ makes the rule to respond to the first
occurrence of the trigger event where using ‘WHENEVER’ makes
the rule to respond to all trigger event occurrences.

3.3 The SOBORO Compiler
The SOBORO compiler ingests a SOBORO program and outputs

a functional reactive program. Specifically, the compiler parses a
SOBORO program to produce an abstract syntax tree (Figure 2a,b)
and then interprets the parsed tree to produce an executable pro-
gram (Figure 2c).

Figure 3 shows a snippet of the compiler implementation. Using
the syntax defined in Section 3.2, one can implement the parser
function with an off-the-shelve parser generator like PEG.js2. The
interp function implements the semantics of SOBORO syntax.
For example, the function interprets the parts of the syntax tree
corresponding to ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩ into a set of statements that apply
reactive programming operators to input sources, i.e., event and
state data streams (Figure 2c L8-L20). The sub-trees corresponding
to ⟨𝑒𝑣𝑒𝑛𝑡-𝑒𝑥𝑝𝑟 ⟩ and ⟨𝑤ℎ𝑒𝑛-𝑒𝑥𝑝𝑟 ⟩ are interpreted as statements that
create trigger event data streams from the input event and state
data streams (Figure 3 L22) and map the trigger data streams to
emit action values and merge the mapped data streams with the
outgoing action data streams (Figure 3 L25-L31), respectively.

The SOBORO compiler is not tied to a particular data format,
programming language, or reactive programming library. We repre-
sented abstract syntax trees is in JSON (JavaScript Object Notation)
and compiled programs in JavaScript using RxJS3 and implemented
the compiler in JavaScript for explanatory purposes only. Other

2https://pegjs.org/
3https://rxjs.dev/

https://pegjs.org/
https://rxjs.dev/

SOBORO: A Social Robot Behavior Authoring Language HRI, March 07–10, 2022,

1 WHEN HumanSpeech is "hello robot"
2 Say "hello there!"

(a) An example SOBORO program.

1 {
2 "type": "behavior",
3 "value": [{
4 "type": "rule",
5 "value": {
6 "type": "when-expr",
7 "value": [{
8 "type": "event-expr",
9 "value": ["is", {

10 "type": "event",
11 "value": "HumanSpeech"
12 }, "hello robot"]
13 }, {
14 ...
15 }, 1, null],
16 }
17 }]
18 }

(b) An example abstract syntax tree representing the example program.

1 var behavior = function (inputs) {
2 var events = inputs[0];
3 var states = inputs[0];
4 var actions = {
5 Say: empty(),
6 };
7 var controllers = {};

8 actions["Say"] = merge(// merge a new action (2nd arg)
9 actions["Say"],

10 events["HumanSpeech"]
11 .pipe(
12 filter(function (val) {
13 return val === "hello robot";
14 })
15)
16 .pipe(
17 mapTo(of("hello there!")), // map an event to an

action value↩→
18 take(1) // respond "tree.value[2]" times
19)
20);

21 var outputs = [actions, controllers];
22 return outputs;
23 };

(c) An example compiled program of the example program.

Figure 2: An example interactive behavior in the representa-
tions involved in the SOBORO compiler.

data formats like YAML (Yet Another Markup Language), program-
ming language like Python, and reactive programming library like
RxPY4 can be used to implement the compiler.

4 EXAMPLE INTERACTIVE BEHAVIORS
We present two example SOBORO programs written for the ide-
alized social robot (e.g., consisted of a tablet “face”, similar to the
one introduced in [6]) that is capable of detecting voice commands,
tracking a face, speaking, and making eye movements. We assume
the following input events

• Ready indicates that the robot is ready.

4https://rxpy.readthedocs.io/en/latest/get_started.html

1 // prog: a string SOBORO program
2 // inOutDesc: a dictionary describing robot inputs and outputs
3 var compiler = function (progIn, inOutDesc) {
4 var tree = parse(progIn);
5 var progOut = interp(tree, inOutDesc);
6 var progOut = format(progOut); // indent the code, etc.
7 return progOut;
8 }

9 ...

10 // tree: an abstract syntax tree returned from parse
11 // inOutDesc: a dictionary describing robot inputs and outputs
12 function interp(tree, inOutDesc) {
13 if (tree.type === "behavior") {
14 return `var behavior = function (inputs) {
15 ...
16 return outputs;
17 }`;
18 // ...
19 // ...
20 } else if (tree.type === "when-expr") {
21 var actionDesc = interp(tree.value[0], inOutDesc);
22 var event = interp(tree.value[0], inOutDesc);
23 if (tree.value[3] === null) {
24 if (actionDesc.length === 1) {
25 return `actions["${actionDesc[0].name}"] = merge(//

merge a new action (2nd arg)↩→
26 actions["${actionDesc[0].name}],
27 ${event}.pipe(
28 mapTo(of(${actionDesc[0].value})), // map an event to an

action value↩→
29 take(${tree.value[2]}) // respond "tree.value[2]" times
30)
31);`;
32 }
33 }
34 // ...
35 } else if (tree.type === "event-expr") {
36 if (tree.op === "is") {
37 return `${tree.value[0]}.pipe(
38 filter(function(val) {
39 return val === ${tree.value[1]};
40 })
41)`;
42 // ...
43 // ...
44 // ...
45 }

Figure 3: A snippet of an example compiler implementation.

• HumanSpeech is an output of the speech recognizer.
• Time represents the time as an discrete event.

and input states
• HumanFace is a visibility state of the human face.

are available to the robot. As for the outputs, we assume the fol-
lowing actions

• Say causes the robot to say a phrase.
• PlaySound starts playing the specified sound file.

and and controllers
• SetImageTo displays the specified image.
• SetEyePosX : moves the eyes to the specified location in x-
axis.

• SetEyePosY : moves the eyes to the specified location in y-
axis.

are available to the robot.

https://rxpy.readthedocs.io/en/latest/get_started.html

HRI, March 07–10, 2022, Michael Jae-Yoon Chung and Maya Cakmak

4.1 Interactive Storytelling
1 w

The first example implements the storytelling behavior that can
wait for human inputs such as verbal response and attention (sim-
plified via the visible human face state, HumaFace is “visible”)
to make progress in narrating the story. When the human is en-
gaged (i.e., “visible”), the robot looks at the human to establish the
mutual gaze. The program is mainly sequential yet responsive to
the human inputs, demonstrating the SOBORO’s expressivity.

4.2 Meditation Guide
1 // Scheduled meditation guide
2 WHENEVER Time is "8:00am"
3 PlaySound "morning_meditation_sound.mp3" or PlaySound

"morning_meditation_instructions.mp3"↩→

4 WHENEVER Time is "4:00pm"
5 PlaySound "afternoon_meditation_sound.mp3" or PlaySound

"morning_meditation_instructions.mp3"↩→

6 // On-demand meditation guide
7 WHENEVER HumanSpeech is "play background music"
8 repeatedly PlaySound "background_meditation_sound.mp3"

9 WHENEVER HumanSpeech is "stop"
10 StopPlaySound

The second example implements a mainly reactive behavior. It
plays two different mediation sounds or instructions at the sched-
uled time. The human can also start another meditation sound
on-demand or stop any sound using a verbal command.

5 FUTUREWORK
SOBORO is in a preliminary state andmultiple improvements can be
made. To make SOBORO more practical, typical language features
like variables and composition patterns should be supported, which
we believe can be done by leveraging existing solutions used in
the domain-specific languages for creating chatbots5. As SOBORO
becomes more complex, it may difficult to extend the current nat-
ural language-like format. We plan to investigate adopting a data
format like JSON, the format used by Vega-lite [15]–a visualization
tool targeting a similar user group (e.g., programmers). Currently,
SOBORO allows programmers to create multiple rules that can be
triggered by the same input event (or state), which is not the desired
behavior. We plan to investigate the possibility of applying one of
the functional reactive program verification techniques recently
proposed by programming language researchers.

6 CONCLUSION
In this paper, we presented SOBORO, a domain-specific language
for authoring interactive robot behaviors targeting programmers
with a limited time budget. The syntax of SOBORO allows users
to express complex interactive behaviors consisting of sequential
and reactive behaviors with ease. The SOBORO compiler interprets
SOBORO programs as functional reactive programs and supports
outputting the compiled program in a language-agnostic way.

We believe our proposed approach of targeting non-roboticist
programmers to author interactive robot behaviors via declarative
5https://github.com/superscriptjs/superscript/wiki

specification is an effective and interesting take on end-user pro-
gramming of social robots research. We believe this paper opens up
new and exciting research directions such as developer tools such
as verifiers, high-level interaction grammar design, and further
applications.

REFERENCES
[1] Anki. 2022. Cozmo SDK. http://cozmosdk.anki.com/docs/. Accessed: 2022-02-14.
[2] Emilia I Barakova, Jan CC Gillesen, Bibi EBM Huskens, and Tino Lourens. 2013.

End-user programming architecture facilitates the uptake of robots in social
therapies. Robotics and Autonomous Systems 61, 7 (2013), 704–713.

[3] Jonathan Bohren and Steve Cousins. 2010. The SMACH high-level executive
[ROS news]. Robotics & Automation Magazine 17, 4 (2010), 18–20.

[4] Crystal Chao and Andrea L Thomaz. 2012. Timing in multimodal turn-taking
interactions: Control and analysis using timed petri nets. Journal of Human-Robot
Interaction 1, 1 (2012), 4–25.

[5] Michael Jae-Yoon Chung, Justin Huang, Leila Takayama, Tessa Lau, and Maya
Cakmak. 2016. Iterative design of a system for programming socially interactive
service robots. In International Conference on Social Robotics. 919–929.

[6] Michael Jae-Yoon Chung, Mino Nakura, Sai Harshita Neti, Anthony Lu, Elana
Hummel, and Maya Cakmak. 2020. ConCodeIt! A Comparison of Concurrency
Interfaces in Block-Based Visual Robot Programming. In International Conference
on Robot and Human Interactive Communication. IEEE, 245–252.

[7] Michele Colledanchise and Petter Ögren. 2016. How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees. Transactions on robotics 33, 2 (2016),
372–389.

[8] Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot in-
teraction design using Interaction Composer eight years of lessons learned. In
International Conference on Human-Robot Interaction. ACM/IEEE, 303–310.

[9] Matthew Huggins, Anastasia K Ostrowski, Andrew Rapo, Eric Woudenberg,
Cynthia Breazeal, and Hae Won Park. 2021. The Interaction Flow Editor: A
New Human-Robot Interaction Rapid Prototyping Interface. arXiv preprint
arXiv:2108.13838 (2021).

[10] Rajeswari Hita Kambhamettu, Michael Jae-Yoon Chung, Vinitha Ranganeni, and
Patrıcia Alves-Oliveira. 2021. Collecting Insights into How Novice Programmers
Naturally Express Programs for Robots. InWorkshop on the intersection of HCI
and PL.

[11] Tino Lourens and Emilia Barakova. 2011. User-friendly robot environment for
creation of social scenarios. In International Work-Conference on the Interplay
between Natural and Artificial Computation. 212–221.

[12] MYSTYROBOTICS. 2022. MYSTYROBOTICS SDK. http://sdk.mistyrobotics.com/.
Accessed: 2022-02-14.

[13] Hugo Pacheco and Nuno Macedo. 2020. ROSY: An elegant language to teach
the pure reactive nature of robot programming. In International Conference on
Robotic Computing. IEEE, 240–247.

[14] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno Maisonnier. 2009.
Choregraphe: a graphical tool for humanoid robot programming. In The Interna-
tional Symposium on Robot and Human Interactive Communication. IEEE, 46–51.

[15] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2016. Vega-lite: A grammar of interactive graphics. Transactions on visualization
and computer graphics 23, 1 (2016), 341–350.

[16] temi. 2022. temi SDK. https://github.com/robotemi/sdk. Accessed: 2022-02-14.

https://github.com/superscriptjs/superscript/wiki
http://cozmosdk.anki.com/docs/
http://sdk.mistyrobotics.com/
https://github.com/robotemi/sdk

	Abstract
	1 Introduction
	2 Related Work
	3 SOBORO Domain-Specific Language
	3.1 Input and Output Types
	3.2 Syntax
	3.3 The SOBORO Compiler

	4 Example Interactive Behaviors
	4.1 Interactive Storytelling
	4.2 Meditation Guide

	5 Future Work
	6 Conclusion
	References

