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PROBLEM ROW-COLUMN OVERLAP NORM ADMM ALGORITHM NUMERICAL RESULTS - SYNTHETIC DATA
e We consider the problem of jointly estimating multiple Gaussian graphical models. Definition. The row-column overlap norm (RCON) induced by a matrix norm f is defined e Reformulation:
as
o Setting: High-dimensional setting with more variables than samples. Qr(A) = min f(V) p
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o Apphcatmns in gene-regulatory netwc?rks. Regulatory genes play a prominent role e Generalizes £, /¢ norm used in [2] to arbitrary norms f. o Augmented Lagrangian: L T 10
in gene-regulatory networks. Detection of regulatory genes that differ between %, X X X X X X X X, X % X X % ) . Fob ot | f
brain cancer and lung cancer gene-regulatory networks is an important application. (O, 02) + MIIZa |11+ M| Zaly + Ao Z Vi, + (F.0' — ©2 — (V+ W), 0 \\; - | ol ) o7
e Main contribution: Propose a novel convex optimization based approach to detect j=1 \a ’
node-based perturbations in GGMs along with an etficient alternating direction method + (G, V-WT)1(Q;,0! —Z,) + (Qs,02 — Zy) + P @' — @2 — (V+ W)|2 01000 2000 3000 4000 0 1000 2000 3000 4000 20 1000 2000 3000 4000
of multipliers (ADMM) algorithm. , , , 2
Xy Ky X3 Xy Xs Xy Xy X3 Xy Xs Xy Xy X3 X4 Xg + §HV_WTH%’+§H@1 _ZlH%’_I_ 5”62 _ZQH%’ (b) 12007 0.8
f=0/t f =10/t f=0/lw 1000} paE=E 1
et g 06
e Expand(A, p,ny) = argmin { —ng log det(©) + p||© — A ||} 800 i _
(X) CONVEX FORMULATION -PNJGL O+ 600) 04
. . — 1y (D+\/D2 | 2WI) K 400}
Perturbed node joint graphical lasso (PNJGL): 2 p ’ 0.
a) Network 1 b) Network 2 c¢) Difference of Networks g
e! é%%mggze%p {L(®,0%) — \1]|O0']1 — A\ [|O%]]1 — X224 (O" — ©?)} . where UDU" is the eigenvalue decomposition of A. 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
++7 ++

PAST WORK p
. . . - e Proximal operator to ¢ /¢, norm: T,(A, \) = argmin 1HX — A%+ Z X ] (e
o Graphical Lasso [3] - Single network estimation f(®) = Z |®;]|, known as the ¢; /¢, norm. FGL special case of PNJGL with ¢ = 1. ! R X 2 P I
P = 1000}
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€51, Algorithm 1: ADMM algorithm for the PNJGL optimization problem
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where S is sample-covariance matrix given by S = XX’ /n where X1, Xo, ..., X,, ~ . . . . put-p = U, [t = L tmax = U, € =1,
iid A(0,5)and ¥ € S” . e Proximal operator computations for overlapping group lasso penalties [5] don’t apply for { = 1:tmax do -
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o Fused Graphical Lasso (FGL) [4] - Multiple network estimation based on Edge based ment. Proximal operator for RCON has no closed-form. Also PSD constraints complicate wiile [Nob converged do
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Simulation study results for PNJGL with ¢ = 2, FGL, and the graphical lasso

p minimize g(X)+h(X) (GL), for (a) n = 10, (b) n = 25, (c) n = 50, (d) n = 200, when p = 100. Within
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