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PROBLEM

• We consider the problem of jointly estimating multiple Gaussian graphical models.

• Setting: High-dimensional setting with more variables than samples.

• Prior knowledge: We assume prior knowledge on the structure of the GGMs -
Specifically that the GGMs differ in node-perturbations. A node is said to be perturbed
between two networks if the node has a high degree in the difference of networks.

• Applications in gene-regulatory networks. Regulatory genes play a prominent role
in gene-regulatory networks. Detection of regulatory genes that differ between
brain cancer and lung cancer gene-regulatory networks is an important application.

• Main contribution: Propose a novel convex optimization based approach to detect
node-based perturbations in GGMs along with an efficient alternating direction method
of multipliers (ADMM) algorithm.
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PAST WORK
• Graphical Lasso [3] - Single network estimation

maximize
Θ∈Sp

++

{n(log det Θ− trace(SΘ))− λ‖Θ‖1} ,

where S is sample-covariance matrix given by S = XXT /nwhere X1,X2, . . . ,Xn ∼
i.i.d N (0,Σ) and Σ ∈ Sp++.

• Fused Graphical Lasso (FGL) [4] - Multiple network estimation based on Edge based
perturbations

maximize
Θ1∈Sp

++,...,Θ
K∈Sp

++

L(Θ1, . . . ,ΘK)− λ1
K∑
k=1

‖Θk‖1 − λ2
∑
k 6=l

‖Θk −Θl‖1

 ,

where, L(Θ1, . . . ,ΘK) =
∑K
k=1 nk

(
log det Θk − trace(SkΘk)

)
. Sk = Xk(Xk)T /n

where Xk
1 ,X

k
2 , . . . ,X

k
n ∼ i.i.d N (0,Σk) and Σk ∈ Sp++.

NAIVE APPROACH

maximize
Θ1∈Sp

++,Θ
2∈Sp

++

L(Θ1,Θ2)− λ1‖Θ1‖1 − λ1‖Θ2‖1 − λ2
p∑
j=1

‖Θ1
j −Θ2

j‖2

 ,

• Support of difference of estimates expressed as complement of the union of groups
instead of union of groups.

• Figure depicts the true difference of networks and estimated difference of net-
works.
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ROW-COLUMN OVERLAP NORM
Definition. The row-column overlap norm (RCON) induced by a matrix norm f is defined
as

Ωf (A) = min
V:A=V+VT

f(V)

• Variant of Overlap norm introduced by Jacob et al [2]

• Accounts for symmetry elegantly.

• Generalizes `1/`2 norm used in [2] to arbitrary norms f .
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f = `1/`1 f = `1/`2 f = `1/`∞

CONVEX FORMULATION -PNJGL
Perturbed node joint graphical lasso (PNJGL):

maximize
Θ1∈Sp

++,Θ
2∈Sp

++

{
L(Θ1,Θ2)− λ1‖Θ1‖1 − λ1‖Θ2‖1 − λ2Ωf (Θ1 −Θ2)

}
.

f(Θ) =

p∑
i=1

‖Θi‖q known as the `1/`q norm. FGL special case of PNJGL with q = 1.

POSSIBLE ALGORITHMS
• Proximal operator computations for overlapping group lasso penalties [5] don’t apply

since the RCON penalty promotes union of overlapping groups instead of the comple-
ment. Proximal operator for RCON has no closed-form. Also PSD constraints complicate
computation.

• Projected Subgradient: The subgradient computation for RCON is non-trivial.

• Second order methods such as interior-point methods are expensive: O(p6).

• Our approach: ADMM. Per-iteration complexity: O(p3).

ADMM APPROACH
Consider the following simple optimization problem,

minimize
X

g(X)+h(X)

subject to X ∈ X

The ADMM approach [1] is as follows:

1. Decide parts of the objective to decouple. Here we decouple g and h by introducing a
new variable Y and constraining X = Y . The resulting optimization problem is given
by,

minimize
X,Y

g(X)+h(Y )

s.t. X ∈ X , X = Y

2. Form the augmented Lagrangian to (1) by first forming the Lagrangian and then augment-
ing it with a quadratic function of equality constraints. Lagrangian given by L(X,Y,Λ) =
g(X)+h(Y ) + 〈Λ, X − Y 〉. Augmented Lagrangian: L(X,Y,Λ) + ρ

2‖X − Y ‖
2
F .

3. Next minimize in turn each primal variable, keeping all other variables fixed. The dual
variables get updated using a dual-ascent update.

ADMM ALGORITHM
• Reformulation:

minimize
Θ1∈Sp

++,Θ
2∈Sp

++,Z1,Z2,V,W

−L(Θ1,Θ2) + λ1‖Z1‖1 + λ1‖Z2‖1 + λ2

p∑
j=1

‖Vj‖q


subject to Θ1 −Θ2 = V + W,V = WT ,Θ1 = Z1,Θ

2 = Z2.

• Augmented Lagrangian:

− L(Θ1,Θ2) + λ1‖Z1‖1 + λ1‖Z2‖1 + λ2

p∑
j=1

‖Vj‖q + 〈F,Θ1 −Θ2 − (V + W)〉

+ 〈G,V −WT 〉+ 〈Q1,Θ
1 − Z1〉+ 〈Q2,Θ

2 − Z2〉+
ρ

2
‖Θ1 −Θ2 − (V + W)‖2F

+
ρ

2
‖V −WT ‖2F +

ρ

2
‖Θ1 − Z1‖2F +

ρ

2
‖Θ2 − Z2‖2F .

• Expand(A, ρ, nk) = argmin
Θ∈Sp

++

{
−nk log det(Θ) + ρ‖Θ−A‖2F

}
= 1

2U
(
D +

√
D2 + 2nk

ρ I
)

UT ,

where UDUT is the eigenvalue decomposition of A.

• Proximal operator to `1/`q norm: Tq(A, λ) = argmin
X

1

2
‖X−A‖2F + λ

p∑
j=1

‖Xj‖q

 .

Algorithm 1: ADMM algorithm for the PNJGL optimization problem
input: ρ > 0, µ > 1, tmax > 0, ε > 0;
for t = 1:tmax do

ρ← µρ ;
while Not converged do

Θ1 ← Expand
(

1
2 (Θ2 + V + W + Z1)− 1

2ρ (Q1 + n1S1 + F), ρ, n1

)
;

Θ2 ← Expand
(

1
2 (Θ1 − (V + W) + Z2)− 1

2ρ (Q2 + n2S2 − F), ρ, n2

)
;

Zi ← T1
(
Θi + Qi

ρ ,
λ1

ρ

)
for i = 1, 2 ;

V← Tq
(

1
2 (WT −W + (Θ1 −Θ2)) + 1

2ρ (F−G), λ2

2ρ

)
;

W← 1
2 (VT −V + (Θ1 −Θ2)) + 1

2ρ (F + GT ) ;
F← F + ρ(Θ1 −Θ2 − (V + W)) ;
G← G + ρ(V −WT );
Qi ← Qi + ρ(Θi − Zi) for i = 1, 2

NUMERICAL RESULTS - REAL DATA

PNJGL with q = 2 and FGL were performed on the brain cancer data set correspond-
ing to 258 genes in patients with Proneural and Mesenchymal subtypes. (a)-(b): NPj
is plotted for each gene, based on (a) the FGL estimates and (b) the PNJGL estimates.
(c)-(d): A heatmap of Θ̂1 − Θ̂2 is shown for (c) FGL and (d) PNJGL; zero values are
in white, and non-zero values are in black.

NUMERICAL RESULTS - SYNTHETIC DATA

Simulation study results for PNJGL with q = 2, FGL, and the graphical lasso
(GL), for (a) n = 10, (b) n = 25, (c) n = 50, (d) n = 200, when p = 100. Within
each panel, each line corresponds to a fixed value of λ2 (for PNJGL with q = 2
and for FGL). Each plot’s x-axis denotes the number of edges estimated to be
non-zero. The y-axes are as follows. Left: Number of edges correctly estimated
to be non-zero. Center: Number of edges correctly estimated to differ across net-
works, divided by the number of edges estimated to differ across networks. Right:
The Frobenius norm of the error in the estimated precision matrices.
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