
 
 

 

  

 Abstract—In electroencephalogram (EEG) based brain-
computer interfaces (BCI) systems, evoked potentials 
provide a relatively accurate way of selecting between large 
numbers of classes. However, they rely on external stimuli. 
Mental imagery (e.g. motor imagery), on the other hand, 
does not require external stimulation and allows real-time 
control but the detection of induced EEG patterns can be 
error-prone. In this paper we propose a scalable, user-
adaptive BCI that combines the advantages of imagery and 
evoked potentials. Users utilize imagery to teach the BCI new 
commands, which are then made available for selection using 
evoked potentials (e.g., the P300). We present preliminary 
results illustrating the proposed approach. 
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I. INTRODUCTION 
RAIN-Computer Interface (BCI) technologies 
provide a novel way for humans to communicate and 

interact with the environment. BCIs are not dependent on 
actual movements; instead, BCIs process the user’s intent 
directly and translate brain activity into control commands 
for devices [1]. For the translations BCIs rely on digital 
signal processing, and on pattern recognition and machine 
learning. Electroencephalographic (EEG) signals recorded 
from the scalp are the most common source for non-
invasive BCIs in humans. 
Virtual Reality (VR) and Augmented Reality (AR) can be 
efficient and powerful tools for enhancing and studying 
BCI technology. In immersive Virtual Environments 
(VEs), BCI users tend to make fewer errors, find BCIs  
easier to learn and use, and report that they enjoy using 
the BCI more (e.g. [2, 3]).  
In this paper, we propose a novel approach to building 
scalable, user-adaptive BCIs that originate from two 
different types of BCIs we have demonstrated previously. 
The first, a self-paced mental imagery BCI, was designed 
to e.g. replace manually operated joysticks for navigating 
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through VEs [3, 4]. The second P300-based BCI was 
designed for sending high-level commands to a semi-
autonomous humanoid robot for physical interaction with 
real objects in AR [5].  
In the following we review the imagery and P300-based 
BCIs, and describe the basic principles and current status 
of the scalable, user-adaptive hierarchical learning 
framework. 

II. METHODS 

A. Replacing Manually Operated Joysticks 
BCIs that allow the user to voluntarily modulate brain 
activity whenever the user wishes to issue commands are 
called self-paced. One class of mental tasks used to 
encode commands is motor imagery (MI). MI is known to 
induce distinguishable changes in oscillatory EEG activity 
(known as event-related (de)synchronization ERD/ERS 
events [6]) over sensorimotor areas. In [4] we described 
such a self-paced BCI based on sensorimotor rhythms that 
can discriminate between three different motor imagery 
classes from ongoing EEG. The BCI used this output to 
navigate in a VE. In particular, users could issue 
navigation commands rotate left, rotate right and move 
forward by imagining left hand, right hand, and foot (or 
tongue) movements, respectively. The user’s task in the 
VE was to navigate and find coins that were scattered 
randomly at different locations in the environment. By 
continuously imagining a specific mental task, switching 
between imagery, or not performing motor imagery at all, 
navigation commands were decoded and sent to the VE.  
Three users took part in the navigation study. After about 
five hours of feedback training (see [4] for more details) 
satisfactory self-paced navigation became possible. The 
classification accuracy between the three types of imagery 
was approx. 80%, with about 17% false positive detection 
whenever no navigation command was required. The time 
lag from motor imagery onset to correct classification of 
induced patterns was around 2.0s. These results might be 
lower than others reported in the literature due to the fact 
that to increase the usability of the BCI, the number of 
bipolar EEG channels was limited to three. Fig.1(a-b) 
show the VE and example trajectories. 

B. Issuing High-Level Commands  
To reach their goal in the above study, users were required 
to continuously perform mental imagery. Such a control 
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protocol, however, might be too tedious and strenuous for 
users. For a number of tasks, selecting high-level 
commands representing the user’s goal would be more 
desirable. Intelligent artificial devices (e.g. a motorized 
wheelchair with path planning and obstacle avoidance 
capabilities) can then be instructed to autonomously 
perform the task. Whenever the executing device needs 
additional instructions for task completion, the user can be 
asked for assistance.  
In [5] we used the P300 visual evoked potential to select 
high-level commands, which are executed semi-
autonomously by a humanoid helper robot (Fujitsu 
HOAP). The robot has the ability to autonomously move 
and pick-up/release objects (Fig.1(c)). The robot also 
possesses some computer vision capabilities, such as 
being able to segment objects on a table and use vision to 
navigate to a destination. The user receives a live feed 
from the robot’s cameras, thereby immersing the user in 
the robot’s environment and allowing the user to select 
actions based on the objects in the image. The BCI was 
designed to command the robot to navigate to a specific 
(known) location, transmit images of objects the robot 
sees at that location, allow the user to select an object for 
pick-up, and finally, command the robot to bring the 
object to the user or transport it to a different location.  
EEG signals were used to select the two main types of 
commands for the robot: which object to pick among the 

ones whose images were transmitted by the robot, and 
which location to choose as the destination from among a 
set of known locations. The images of the possible choices 
(objects or destination locations) were scaled and arranged 
as a grid on the computer screen of the user. Fig.1(d) 
illustrates the case of two objects, one red and one green. 
According to the oddball paradigm used to evoke the 
P300 response, the user focuses his or her attention on the 
image of choice while the border of a randomly selected 
image is flashed every 250 ms. When the flash occurs on 
the attended object, a P300 can be expected; this response 
is then detected by the BCI and used to infer the user’s 
choice. 
The results, based on nine able-bodied subjects, show that 
an accuracy of 95% can be achieved for discriminating 
between four objects. With the implemented rate of 4 
flashes per second, the selection of one out of four options 
takes 5 sec. This accuracy can already be achieved on-line 
after a 10-minute data collection and calibration 
procedure.  

C. Towards Hierarchical BCIs  
We are now developing a new generation of scalable, 
user-adaptive BCIs that combine the advantages of 
imagery and evoked potentials. Users utilize imagery to 
teach the BCI new commands, which are then made 
available for selection using evoked potentials (e.g., the 
P300). This leads to a hierarchical BCI wherein lower-
level actions are first learned and later semi-autonomously 
executed using a higher-level command, thereby 
improving accuracy and freeing the user from having to 
engage in tedious moment-by-moment control. Our goal is 
to explore the efficacy of such a system in the context of 
controlling the humanoid robot where new lower level 
behaviors are learned via imagery and invoked later as 
higher-level commands via P300. 
To investigate the feasibility of such an approach, we 
performed a first set of EEG-based BCI experiments that 
intermixed motor imagery and P300 control tasks. 
Preliminary results from the on-line simulation study 
(offline analysis), in agreement with other studies on 
hybrid BCIs [7], suggest that users can switch between the 
modalities of motor imagery and evoked potentials, and 
achieve reasonably high accuracies in each case [8]. 
Our current experiments are focused on investigating 
whether users can maneuver the robot using imagery 
(Fig.2) and later invoke these user-taught behaviors 
directly through P300-based commands. In these 
experiments, the user attempts to create, on the fly, a new 
command such as “Go to kitchen” by first navigating the 
humanoid to the desired location using motor imagery for 
a few trials. The BCI then uses these trajectories collected 
from the robot’s on-board sensors during navigation to 
build a navigational model using a radial basis function 
(RBF) neural network. On a subsequent run, when the 
robot is commanded to navigate autonomously to the 
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Figure. 1 (a) VE presented on stereoscopic projection wall. (b) Map 
of the VE consisting of trees and hedges with three example 
trajectories (white, yellow and red line). The “x” marks the starting 
position. “o” marks the position of the coins subjects had the task to 
collect. (c) HOAP2 humanoid robot executing selected high-level 
command from user. (d) Live feedback images from the robot’s 
camera for P300 based BCI. The smaller image in the upper left 
corner of the computer screen is the live feed from the robots 
camera. The larger images in the lower part of the screen show the 
segmented objects, here a red and a green cube. User attends to 
image of desired object while borders are randomly flashed (red 
square). (Images (c) and (d) from [5], courtesy of R. Chalodhorn). 



 
 

 

kitchen based only on a higher level P300-based 
command, the navigational model autonomously controls 
the robot by mapping incoming robotic sensor data to 
appropriate navigational actions until the robot reaches the 
kitchen. We are currently testing this paradigm in a 
simulated environment (Fig. 3). Fig. 4 shows some 
preliminary results illustrating how a small set of user 
trajectories (simulated in this case; shown in red) allows 
the system to learn a navigational model and later 
autonomously navigate to a desired goal location.  

III. DISCUSSION 
Mental imagery induces changes in oscillatory EEG 
components without relying on external sensory 
stimulation, and enables self-paced BCI operation; the 
detection of such induced patterns, however, is error-
prone compared to detecting patterns that are evoked by 
external stimuli such as the P300. Our approach leverages 
the benefits of the two paradigms using a hierarchical BCI 
system that adapts to the user. 
The presented applications are only examples of how VR 
and AR can be integrated with BCI technology. The VE in 
the imagery-based BCI navigation application can easily 
be replaced with more complex environments such as 
museums, exhibitions or even entire cities (e.g. [9]). This 
would enable, for example, physically impaired or 
paralyzed BCI users to enjoy cultural experiences from 
home. Emerging computer graphics tools could allow 
quick and automatic generation of stereoscopic 3D models 
from conventional 2D pictures [10].  
Artificial devices that are able to automatically detect 
task-related objects and context-sensitive information, and 
to merge the results with the real world, such as the 
humanoid assistive robot we used in our study, are useful 
tools to reduce the number of BCI-based selections. Non-
stationarity and inherent variability of EEG signals are 
still major problems for the detection and discrimination 
of brain activity patterns. Minimizing the information 

transfer while maximizing the task performance might be 
one way towards more practical applications.  
The combination of mental imagery and evoked potentials 
allows the development of new paradigms such as the 
hierarchical user-adaptive scalable learning framework 
proposed in this paper. The BCI user can not only 
customize their BCI, but also train connected artificial 
devices and teach them new behaviors and skills that 
combine lower-level primitives. In the proposed approach, 
the best performance is achieved only when the human, 
the BCI, and the controlled device (the robot) co-adapt in 
a mutually beneficial manner. Such co-adaptation is a 
topic of particular importance to the BCI community. As a 

 

Figure 3. VR simulation of the robot learning a new navigation task. 
The screenshot shows the simulated HOAP2 humanoid robot 
executing a high-level command, i.e., the robot automatically moves 
from the starting position in the VR to the red target. In the upper 
left corner the graphical user interface for controlling the robot is 
depicted. Each button represents a command that is available for 
P300 selection. To evaluate the performance of the navigational 
model a joystick can be used to control the robot. The window in 
the lower left corner shows trajectories recorded during user 
navigation (training samples) and autonomous robot navigation. 
 
 

 

Figure. 4. Representation of the navigational model. The x-axis and 
y-axis represent x-axis and y-axis of a top-down map of the 
simulated environment. The red lines are simulated user trajectories 
generated to test the learning algorithm. The black circles are 
starting locations and the black crosses are ending locations of the 
navigation task. These trajectories were used to train the radial basis 
function (RBF) neural network. The dashed green line is a trajectory 
generated by the network to autonomously guide the simulated 
robot. The small arrows indicate the vector field learned by the RBF 
network based on the red trajectories. 

 
 

Figure 2. Imagery-based control of a humanoid robot.  
 



 
 

 

first step we are investigating this problem within the 
context of navigation but the goal is to develop models 
and learning algorithms that can generalize to other tasks 
as well.  
We believe the use of VR and AR in combination with 
hierarchical BCIs and models of learning may help 
increase BCI usability, and reveal novel ways in which 
BCIs can enhance human communication and interaction 
with physical and virtual worlds. 
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